Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T09:09:09.995Z Has data issue: false hasContentIssue false

Determine the Three-Dimensional Crystallographic Misorientation in Heterostructures by Selected Area Diffraction (SAD) in TEM

Published online by Cambridge University Press:  10 February 2011

X. J. Guo
Affiliation:
Dept. of Chemistry, National Taiwan University, Taipei, Taiwan Center of Materials Sciences, National Tsing-Hua University, Hsinchu, Taiwan
C.-Y. Wen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
J. H. Huang
Affiliation:
Center of Materials Sciences, National Tsing-Hua University, Hsinchu, Taiwan Dept. of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
H. C. Shih
Affiliation:
Dept. of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
Get access

Abstract

We proposed a concise and novel scheme to determine the crystallographic misorientation of heteroepitaxial structures. In addition to subtle high-resolution transmission electron microscope images, the information revealed from selected-area diffraction patterns at the interfaces offers another path to determine the angles of misorientations. The principle is to extract the basically three-dimensional misorientation information from a two-dimensional selected-area diffraction pattern through the employment of the Laue circle

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Olsen, G. H. and Smith, R. T., Phys. Status Solidi (a) 31 (1975) 739.Google Scholar
[2] Ricsz, F., Lischka, K., Rakennus, K., Hakkarainen, T. and Pesek, A., J. Crystal Growth 114 (1991) 127.Google Scholar
[3] Ravila, P., Airaksinen, V. M., Lipsanen, H., Lipsanen, H., Tuomi, T. and Claxton, P. A., J. Crystal Growth 114 (1991) 569.Google Scholar
[4] Auvray, P., Baudet, M. and Regreny, A., J. Crystal Growth 95 (1989) 288291.Google Scholar
[5] Abramof, E., Pesek, A., Juza, P., Sitter, H., Fromherz, T., and Jantsch, W., Appl. Phys. Lett. 60 (1992) 23682370.Google Scholar
[6] Nagai, H., J. Appl. Phys. 45 (1974) 3789.Google Scholar
[7] Penisson, J. M., Nowicki, T., and Biscondi, M., Phil. Mag. 58 (1988) 947956.Google Scholar
[8] Chen, F-R. and King, A. H., J. Electron. Microsc. Tech., 6 (1987) 5561.Google Scholar
[9] Bonnet, R. and Durand, F., Phys. Status Solidi (a) 27, (1975) 543549.Google Scholar
[10] Jiang, X., Zhang, R. Q., Yu, G., and Lee, S. T., Phys. Rev. B 58, (1998) 15351.Google Scholar
[11] Zhu, W., Wang, X. H., Stoner, B. R., Ma, G. H. M., Kong, H. S., Braun, M. W., and Glass, J. T., Phys. Rev. B 47, (1993) 6529.Google Scholar
[12] Thürer, K.-H., Schrek, M., and Stritzker, B., Phys. Rev. B 57, (1998) 15454.Google Scholar