Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T20:44:15.819Z Has data issue: false hasContentIssue false

Determination of the Order Parameter by Quantitative Tem Techniques

Published online by Cambridge University Press:  10 February 2011

Michael H. Bode
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
S. R. Kurtz
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
K. A. Bertness
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
J. Olson
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

To quantitatively measure the order parameter in ordered III-V materials we have developed two techniques based on electron microscopy. The first technique calculates the diffraction pattern of ordered material quantitatively and fits the calculated data to experimentally obtained data. A test sample, specifically grown for this technique, shows that the method can determine the average order parameter with high accuracy. We found an order parameter of 0.34, which coincides with the value found by piezo-reflectance measurements. To measure the order parameter on a smaller length scale, we use a technique based on image processing of high-resolution TEM images. By comparing ordered and disordered parts of the image, we calculate the relative order parameter on an atomic length scale. Analyzing the data provides information about the development of the ordering in the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arent, D.J., Bertness, K.A., Kurtz, Sarah R., Bode, M., and Olson, J.M., Proceedings of the Mat. Res. Soc. Symp. Proc. 1992, 281, 67 Google Scholar
[2] Arent, D.J., Bode, M., Bertness, K.A., Kurtz, Sarah R., and Olson, J.M. Applied Physics Letters 62 (1993) 180 Google Scholar
[3] Suzuki, T., Gomyo, A., J. Cryst. Growth 1990, 99, 60 Google Scholar
[4] Chen, G.S., Jaw, D.H., Stringfellow, G.B., J. Appl. Phys. 69 (1991) 4263 Google Scholar
[5] Froyen, S., Zunger, A., Phys. Rev. Lett. 66 (1991) 2132 Google Scholar
[6] Wei, S.-H., Zunger, A., Phys. Rev. B 39 (1989) 3279 Google Scholar
[7] Ueda, O., Hoshino, M., Takechi, M., Ozeki, M., Kato, T., Matsumoto, T., J. Appl. Phys. 68 (1990) 4268 Google Scholar
[8] Ourmazd, A., Schwander, P., Kisielowski, C., Seibt, M., Baumann, F.H. and Kim, Y.O., Inst. Phys. Conf. Ser. No. 134: Section 1 (1993) 1 Google Scholar
[9] Kuan, T.S., Kuech, T.F., Wilkie, W.L., Phys. Rev. Lett. 54 (1985) 201 Google Scholar
[10] For example see Reimer, L., Transmission Electron Microscopy”, Springer Verlag Berlin 1984, pp 279.Google Scholar
[11] Radi, G., Acta Cryst. A 26 (1970) 41 Google Scholar
[12] Bode, M., Ourmazd, A., Cunningham, J., Hong, M., Phys. Rev. Let. 67 (1991) 843 Google Scholar
[13] Ourmazd, A., Kim, Y., M. Bode Mat. Res, Soc. Symp. Proc. 1989 163 (1990) 639 Google Scholar