Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T12:16:50.237Z Has data issue: false hasContentIssue false

Determination of Diffusion Parameters for Arsenic

Published online by Cambridge University Press:  25 February 2011

Michael Heinrich
Affiliation:
TU-Wien, E3598, Gußhausstraße 27-29, A-1040 Wien, Austria
Matthias Budil
Affiliation:
TU-Wien, E3598, Gußhausstraße 27-29, A-1040 Wien, Austria
Hans W. Pötzl
Affiliation:
TU-Wien, E3598, Gußhausstraße 27-29, A-1040 Wien, Austria
Get access

Abstract

This paper deals with an analysis of the oxynitridation and direct nitridation experiments of Fahey et al.(1984[1]). The inconsistencies in the evaluation of the fiactional component of diffusion for aisenic are discussed. Using a recently developed diffusion model an explanation for the diffusion data for arsenic is given. The standard equation for analyzing diffusion under nonequilibrium conditions is shown to lead to erroneous results. A consistent treatment must account for the concentrations of arsenic, point defects and arsenic point defect pairs. Pair formation kinetics must be included. Values are presented for the diffusion constants DIAs, DVAS, and the reaction constants kIAs, kVAs depending on the fractional interstitial component of diffusion .

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fahey, P., Barbuscia, G., Moslehi, M., Dutton, R.W., Appl. Phys. Lett. 46 (8), 1984, p. 784 Google Scholar
2 Budil, M., Pötzl, H., Stingeder, G., Grasserbauer, M., Goser, K., Materials Science Forum (Proc. 15. ICDS), Vol. 38–41, Part 2, pp. 719724, 1989 Google Scholar
3 Orlowski, M., Appl. Phys. Lett. 53 (14), 1988, p. 1439 Google Scholar
4 Mulvaney, B.O., Richardson, W.B., Appl. Phys. Lett. 51 (18), 1987. p. 1439 Google Scholar
5 Morehead, F.F., Lever, R.F., AppJ. Phys. Lett. 48 (2), 1986, p. 151 Google Scholar
6 Jüngling, W., IEEE Trans ED–32, 1985, p. 156 Google Scholar
7 Tan, T.Y., Gösele, U., Appl . Phys. A 37(1–17), 1985, p. 1 Google Scholar
8 Taniguchi, K., Antoniadis, D.A., Matsushita, Y.. AppJ. Phys. Lett. 42 (11), 1983, p.961 Google Scholar
9 Antoniadis, D.A., Moskovitz, I., J. Appl. Phys. 53 (10), 1982, p. 6788 Google Scholar
10 Hoyt, J.L., Gibbons, J.F. Mat. Res. Soc. Symp. Proc. Vol. 52, 1986, p. 15 Google Scholar
11 Michel, A.E. Mat. Res. Soc. Symp. Proc. Vol. 52, 1986, p. 3 Google Scholar
12 Seidel, T.E., Lischner, D.J., Pai, C.S., Knoell, R.V., Mahrer, D.M., Jacobson, D.C. Nuclear Instruments and Methods in Physics Research B7/8, 1985, p.Google Scholar
13 Kalish, R., Sedgwick, T.O., Mader, S. Appl. Phys. Lett. 44 (1), 1984, p. 107 Google Scholar
14 Narayan, J., Holland, O.W., Eby, R.E., Wortman, J.J., Oguz, V., Rozgonyi, G.A. Appl. Phys. Lett. 43 (10), 1983, p. 957 Google Scholar