Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T17:46:37.107Z Has data issue: false hasContentIssue false

Detection of Electronic Defects in Strip-Heater Crystallized Silicon Thin Films

Published online by Cambridge University Press:  15 February 2011

N. M. Johnson
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
M. D. Moyer
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
L. E. Fennell
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
E. W. Maby
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
H. Atwater
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Electronic defects in strip-heater crystallized silicon thin films have been investigated with capacitance-voltage (C-V),deep-level spectroscopic, and scanning-electron microscopic techniques. For electrical characterization the crystallized silicon films were used to fabricate inverted metal-oxide-silicon capacitors in which degenerately doped bulk silicon substrates provided the gate electrode. High-frequency C-V characteristics yield effective fixed-charge densities in the oxide of ≤ 2×1011 cm−2. Trap-emission spectra, recorded with deep-level transient spectroscopy on both p-type and n-type capacitors, indicate a continuous distribution of deep levels throughout the silicon bandgap. The Si-SiO2 interface is considered to be the principal source of this deep-level continuum, since the films are essentially single crystal with a low density of subgrain boundaries; the effective interface-state density is ≤ 2.5×1010 eV−1 cm−2. A discrete energy level, detectable above the background continuum,appears in the upper half of the silicon bandgap; it may identify a point defect in the bulk of the silicon film with a spatially uniform density of approximately 1×1013 cm−3. On lateral p-n junction diodes, electron-beam-induced-current images reveal enhanced diffusion of arsenic along structural defects intersecting the junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, N. M., Moyer, M. D. and Fennell, L. E., Appl. Phys. Lett. 41, 560 (1982).Google Scholar
2.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Appl. Phys. Lett. 38, 900 (1981).Google Scholar
3.Maby, E. W., Geis, M. W., LeCoz, Y. L., Silversmith, D. J., Mountain, R. W. and Antoniadis, D.A., IEEE Electron Device Lett. EDL –2, 241 (1981).Google Scholar
4.Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Maby, E. W. and Antoniadis, D. A., Appl. Phys. Lett. 40, 158 (1981).Google Scholar
5.Fan, J. C. C., Geis, M. W. and Tsaur, B-Y., Appl. Phys. Lett. 38, 365 (1981).Google Scholar
6.Johnson, N. M., J. Vac. Sci. Technol. 21, 303 (1982).Google Scholar
7.Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 1982).Google Scholar
8.Seager, C. H., Pike, G. E. and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).Google Scholar
9.Werner, J., Jantsch, W., Froehner, K. H. and Queisser, H. J., Grain Boundaries in Semiconductors (Elsevier, New York, 1982), eds. Leamy, H. J., Pike, G. E. and Seager, C.H., pp. 99104.Google Scholar
10.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Physics of MOS Insulators (Pergamon, New York, 1980), eds. Lucovsky, G., Pantelides, S. T. and Galeener, F. L., pp. 311315.Google Scholar
11.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., J. Vac. Sci. Technol. 19, 390 (1981).Google Scholar
12.Johnson, N. M., unpublished.Google Scholar
13.Biegelsen, D. K., Johnson, N. M., Nemanich, R. J., Moyer, M. D. and Fennell, L., Laser and Electron Beam Interactions with Solids (Elsevier, New York, 1982),eds. Appleton, B. R. and Celler, G. K., pp. 331336.Google Scholar
14.Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Grain Boundaries in Semiconductors (Elsevier, New York, 1982), eds. Leamy, H. J., Pike, G. E. and Seager, C.H., pp. 287296.Google Scholar
15.Kamins, T. I. and Von Hersen, B. P., IEEE Electron Device Lett. EDL – 2, 313 (1982).Google Scholar
16.Ng, K. K., Celler, G. K., Povilonis, E. I., Frye, R. C., Leamy, H. J. and Sze, S. M., IEEE Electron Device Lett. EDL–2, 316 (1981).Google Scholar
17.Pinizzotto, R. F., Lam, H. W. and Vaandrager, B. L., Appl. Phys. Lett. 40, 388 (1982).Google Scholar
18.Kimerling, L. C., Radiation Effects in Semiconductors 1979 (Inst. Phys. Conf.Ser.31,Bristol,1977), p. 221.Google Scholar