Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T22:05:24.460Z Has data issue: false hasContentIssue false

Design Concepts for Improved Thermoelectric Materials

Published online by Cambridge University Press:  15 February 2011

Glen A. Slack*
Affiliation:
Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180–3590
Get access

Abstract

Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and crypto-clathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Slack, G.A., ”New Materials and Performance Limits for Thermoelectric Cooling” in CRC Handbook of Thermoelectrics. edited by Rowe, D.M., CRC Press, Boca Raton, 1995, pp. 407440.Google Scholar
2. Ioffe, A.V. and Ioffe, A.F., Soy. Phys.-Solid State 2, p. 719 (1960).Google Scholar
3. Eucken, A. and Kuhn, G., Zeit. Phys. Chem. 134, p. 193 (1928).Google Scholar
4. Slack, G.A., Solid State Physics 34, p. 1 (1979).Google Scholar
5. Harrison, J.P., Peressini, P.P., and Pohl, R.O., Phys. Rev. 171, p. 1037 (1968).Google Scholar
6. Cahill, D.G., Fischer, H.E., Watson, S.K., Pohl, R.O., and Slack, G.A., Phys. Rev. B 40, p. 3254 (1989).Google Scholar
7. Handa, Y.P. and Cook, J.G., J. Phys. Chem. 91, p. 6327 (1987).Google Scholar
8. Vogt, W., Ann. d. Physik 7, p. 183 (1930).Google Scholar
9. Slack, G.A., Phys. Rev. B 6, p. 3791 (1972).Google Scholar
10. Wuensch, B.J. and Nowacki, W., Zeit. f. Kristallog. 125, p. 459 (1967).Google Scholar
11. Frueh, A.J., Am. Mineralogist 44, p. 693 (1959).Google Scholar
12. Mahan, G.D. and Sofo, J.O., Proc. Natl. Acad. Sci. 93, p. 7436 (1996).Google Scholar
13. Mahan, G.D., J. Appl. Phys. 65, p. 1578 (1989).Google Scholar
14. Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M., and Ehrlich, A.C., J. Appl. Phys. 79, p. 4002 (1996).Google Scholar
15. Kasper, J.S., Hagenmuller, P., Pouchard, M., and Cros, C., Science 150, p. 1713 (1965).Google Scholar
16. Adams, G.B., O'Keefe, M., Demkov, A.A., Stankey, O.F., and Huang, Y.M., Phys. Rev. B 49, p. 8048 (1994).Google Scholar
17. Cros, C., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 2, p. 570 (1970).Google Scholar
18. Chu, T.L., Chu, S.S., and Ray, R.L., J. Appl. Phys. 53, p. 7102 (1982).Google Scholar
19. Saito, S. and Oshiyama, A., Phys. Rev. B 51, p. 2628 (1995).Google Scholar