Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-13T04:23:04.729Z Has data issue: false hasContentIssue false

The Design and Control of Catalytic Motors: Manipulating Colloids and Fluids with Self-Generated Forces

Published online by Cambridge University Press:  01 February 2011

Timothy R. Kline
Affiliation:
trk145@psu.edu, Pennsylvania State University, Chemistry and Center for Nanoscale Science, 104 Chemistry Building, University Park, PA, 16802, United States
Jodi Iwata
Affiliation:
jui106@psu.edu, Pennsylvania State University, University Park, PA, 16802, United States
Paul Lammert
Affiliation:
lammert@psu.edu, Pennsylvania State University, University Park, PA, 16802, United States
Darrell Velegol
Affiliation:
velegol@engr.psu.edu, Pennsylvania State University, Department of Chemical Engineering, 111 Fenske Building, University Park, PA, 16802, United States
Thomas Mallouk
Affiliation:
tom@chem.psu.edu, Pennsylvania State University, University Park, PA, 16802, United States
Ayusman Sen
Affiliation:
asen@chem.psu.edu, Pennsylvania State University, University Park, PA, 16802, United States
Get access

Abstract

Microfabrication was employed to pattern silver (Ag) on a gold (Au) surface. The two metals served as bimetallic heterogeneous catalysts for the heterogeneous decomposition of H2O2. Silver was the cathode, carrying out H2O2 reduction (to water) and gold the anode carrying out H2O2 oxidation (to oxygen). Both protons and electrons are created at the anode (as a part of the reaction) and migrate to the cathode (migration of ions is a current) where they are consumed. Thereby establishing an electric field (migration of ions obeys Ohm's law), which passively pumps fluids through electroosmosis. Electrophoresis also present as either an additive component to the electroosmotic flow or results in pattern formation (occurs at point where electroosmosis is equal and opposite to that of electrophoresis). Herein, the electrokinetic model is further tested and validated as chemical methods to tune the tracer behavior (convection to pattern formation), design of asymmetric patterns through microfabrication and attempts to indirectly measure the electric field were successful.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Van Lintel, H. T. G.; Vandepol, F. C. M.; Bouwstra, S. Sens. Act. 15, 153167. (1988).Google Scholar
2 Gallardo, B. S.; Gupta, V. K.; Eagerton, F. D.; Jong, L. I.; Craig, V. S.; Shah, R. R.; Abott, N. L. Science 283, 5760 (1999).Google Scholar
3 Kataoka, D. E.; Trojan, S. M. Nature 402, 794797 (1999).Google Scholar
4 Anderson, J. L. Ann. Rev. Fluid Mech. 21, 6199 (1989).Google Scholar
5 Paxton, W. F. Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. J. Am. Chem. Soc. 126, 1342413431 (2004).Google Scholar
6 Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Angew. Chem., Int. Ed. 44, 744746 (2005).Google Scholar
7 Catchmark, J. M.; Subramanian, S.; Sen, A. Small 1, 202–6 (2005).Google Scholar
8 Paxton, W. E., Sen, A.; Mallouk, T. E. Chem-Eur. J. 11, 64626470 (2005).Google Scholar
9 Kline, T. R. Paxton, W. F.; Wang, Y.; Velegol, D.; Mallouk, T. E.; Sen, A. J. Am. Chem. Soc. 127, 1715017151 (2005).Google Scholar
10 Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. J. Am. Chem. Soc. (in press).Google Scholar
11 Trau, M. S., , S.; Saville, D. A.; Aksay, I. A. Langmuir 11, 46654672. (1995).Google Scholar
12 Isambert, H.; Ajdari, A.; Viovy, J. L. J. Prost Phys. Rev. Lett. 78, 971974. (1997).Google Scholar
13 Ristenpart, W. D.; Aksay, I. A.; Saville, D. A. Phys. Rev. Lett. 90, 128303–1 (2003).Google Scholar
14 Abe, M. Y. A., Orita, M.; Ohkubo, T.; Sakai, H.; Momozwaw, N. Langmuir 20, 7021–6. (2004).Google Scholar
15 Solomenstev, Y. G., A., S.; Bevan, M.; Anderson, J. L. Langmuir 16, 92089216. (2000).Google Scholar
16 Solomenstev, Y. B., , M.; Anderson, J. L. Langmuir 13, 60586068. (1997).Google Scholar
17 Dukhin, S. S.; Derjaguin, B. V. Surface and Colloid Science (Wiley, New York, 1974).Google Scholar
18 O'Brien, R. W. J. Colloid Int. Sci. 92, 204 (1983).Google Scholar
19 Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. Journal of Fluid Mechanics 148, 247269 (1984).Google Scholar
20 Martin, B. R., Furnange, D. C., Jackson, T. N., Mallouk, T. E. & Mayer, T. S. Adv. Funct. Mat. 11, 381386 (2001).Google Scholar
21 Martin, B. R., St Angelo, S. K. & Mallouk, T. E. Adv. Funct. Mat. 12, 759765 (2002).Google Scholar
22 Kline, T. R.; Iwata, J.; Lammert, P. E.; Mallouk, T. E.; Sen, A.; Velegol, D. J. Phys. Chem. B, (in press).Google Scholar
23 Schweiss, R.; Welzel, P. B.; Werner, C.; Knoll, W. Langmuir 2001, 17, 43044311.Google Scholar
24 Harrison, J. T.; Elton, G. A. H. J. Chem. Soc. 1959, 38383843.Google Scholar