Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T01:42:38.886Z Has data issue: false hasContentIssue false

The Depth Dependence of Photoluminescence and Electrolytic Electroluminescence in Porous Silicon Films

Published online by Cambridge University Press:  28 February 2011

M. I. J. Beale
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs, WR14 3PS, UK
T. I. Cox
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs, WR14 3PS, UK
L. T. Canham
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs, WR14 3PS, UK
D. Brumhead
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs, WR14 3PS, UK
Get access

Abstract

The depth dependence of the photoluminescence (PL) spectrum, both in terms of intensity and wavelength of the peak, is correlated with the electrochemical and chemical processes occurring during the formation of the porous silicon. The depth dependence of the intensity of the electroluminescence (EL) under both anodic bias and cathodic bias, in solutions containing 1M H2SO4 and 0.1M Na2S2O8, is found to be identical with that of the PL. These observations strongly suggest that the silicon skeleton is highly conductive during electrolytic EL, in marked contrast to its high resistivity in air. Strong evidence is provided linking the electrolytic EL to the PL. We extend the quantum confinement based model for PL to the case of electrolytic EL.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Noguchi, N., Suemune, I., Yamanishi, M., Hua, G. C., and Otsuka, N., Jpn. J. Appl. Phys. 31, 229 (1992).Google Scholar
2. Prokes, S. M., Freitas, J. A. Jr, and Searson, P. C., Appl. Phys. Lett., 60, 3295 (1992).Google Scholar
3. Tischler, M. A., Collins, R. T., Tsang, J. C., Stathis, J. H., Batstone, J. L., and Zollner, S, in Light Emission from Silicon, edited by Iyer, S. S., Collins, R. T., and Canham, L. T. (Mater. Res. Soc. Proc. 256, Pittsburgh, PA 1991) pp 189195.Google Scholar
4. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
5. Bressers, P. M. M. C., Knapen, J. W. J., Meulenkamp, E. A., and Kelly, J. J., Appl. Phys. Lett. 61, 108 (1992).Google Scholar
6. Canham, L. T., Leong, W. Y., Beale, M. I. J., Cox, T. I., and Taylor, L. L., Appl. Phys. Lett., in press (1992).Google Scholar
7. Calcott, P.D.J., Nash, K.J., Canham, L.T., MKane, J. and Brumhead, D. in Microcrvstalline Semiconductors-Materials Science and Devices, edited by Aoyagi, Y., Canham, L.T., Fauchet, P.M., Shimizu, I. and Tsai, C.C. (Mater. Res. Soc. Proc, Pittsburg, PA, 1993) to be published.Google Scholar
8. Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D.. Submitted to Solid State Communications (1992).Google Scholar
9. Vial, J. C., Billat, S., Bsiesy, A., Fishman, G., Gaspard, F., Herino, R., Ligeon, M., Madeore, F., Mihalescu, I., Muller, F., and Romestain, R., Physica B, to be published.Google Scholar
10. Canham, L. T., Leong, W. Y., Cox, T. I., Beale, M. I. J., Nash, K. J., Calcott, P., Brumhead, D., Taylor, L. L., and Marsh, K. J., Proceedings of 21st International Conference on the Physics of Semiconductors, Beijing, China, (World Scientific, Publishers, 1992), in press.Google Scholar
11. Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., and Vial, J. C., in Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Iyer, S. S., and Wang, K. L. (Mater. Res. Soc. Proc. 220, Pittsburgh, PA, 1991) pp 633644.Google Scholar
12. Cullis, A.G. and Canham, L.T., Nature, 353, 335 (1991).Google Scholar
13. Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T. and Qteish, A., Phys. Rev. Lett. 69, 1232 (1992)Google Scholar