Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:07:27.624Z Has data issue: false hasContentIssue false

Deposition of Tin by Electron Cyclotron Resonance - Metal Organic Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

P. W. Wisk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. A. Bohling
Affiliation:
Air Products and Chemical Inc., Allentown, PA
Get access

Abstract

We have investigated the feasibility of depositing TiN from nitrogen plasmas by Electron Cyclotron Resonance – Metal Organic Molecular Beam Epitaxy (ECR-MOMBE). Growth rate, index of refraction and resistivity were evaluated as a function of growth temperature and group V flow. It was found that TiN could be deposited at reasonable growth rates on either GaAs or Si substrates. However, the resistivity of the materia is quite high, >1700 µΩ-cm, probably because of significant carbon uptake into the layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katz, A., Feingold, A., Pearton, S. J., Nakahara, S., Ellington, E., Chakrabarti, U. K., Geva, M. and Lane, E., J. Appl. Phys. 70(7) 3666 (1991).Google Scholar
2. Katz, A., Feingold, A., Pearton, S. J., Lane, E., Geva, M., Stevie, F. A. and Jones, K., J. Appl. Phys. 71(2) 993 (1992).Google Scholar
3. Suguro, K., Nakasaki, Y., Shina, S., Yoshii, T., Mariya, T. and Tango, H., J. Appl. Phys. 62, 1265 (1987).Google Scholar
4. Joshi, R. V., Moy, D., Brodski, S., Charai, A., Krusin-Elbaum, L., Restle, P. J., Nguyen, T. N. and Oh, C. S., Appl. Phys. Lett. 54, 1672 (1989).Google Scholar
5. Noel, J. P., Houghton, D. C., Este, G., Shepherd, F. R. and Plattner, H., J. Vac. Sci. Technol. A2, 284 (1984).Google Scholar
6. Pang, Z., Baumerzoug, M., Kruzelecky, R. V., Mascher, P. and Simmons, J. G., in press, and references therein.Google Scholar
7. Zhang, L. C., Liang, C. L., Cheung, S.K. and Cheung, N. W., J. Vac. Sci. Technol. B5, 1716 (1987).Google Scholar
8. Wittmer, M., Appl. Phys. Lett. 36, 456 (1980).Google Scholar
9. Cheung, N. W., Seefeld, H. Von, Nicolet, M. A., Ho, F. and Iles, P., J. Appl. Phys. 52,4297 (1981).Google Scholar
10. Soriano, L., Abbate, M., Fuggie, J. C., Prieto, P., Jiménez, C., Sanz, J. M., Galin, L., Hofman, S., J. Vac. Sci. Technol. A11(1) 47 (1993).Google Scholar
11. Geissberger, A. E., Sedler, R. A., Balazan, M. L. and Crites, J. W., J. Vac. Sci. Technol. B5, 170 (1987).Google Scholar
12. Akahori, T., Tanihara, A. and Tano, M., Jap. J. Appl. Phys. 30(12B) 3558 (1991).Google Scholar
13. Hoke, W. E., Lemonias, P. J. and Weir, D. G., J. Crystal Growth 111, 1024 (1991).Google Scholar
14. Paisley, M. J., Sitar, Z., Posthill, J. B. and Davis, R. F., J. Vac. Sci. Technol. A7, 701 (1989).Google Scholar
15. Strite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoc, H., J. Vac. Sci. Technol. B9, 1924 (1991).Google Scholar
16. Wisk, P. W., Abernathy, C. R., Pearton, S. J., Ren, F., Lothian, J. R., Katz, A. and Jones, K., Mat. Res. Soc. Symp. in press.Google Scholar
17. Abernathy, C. R., Wisk, P. W., Pearton, S. J. and Ren, F., J. Vac. Sci. Technol. B, 10, 2153 (1992).Google Scholar
18. Bohling, D. A. and Abernathy, C. R., unpublished results.Google Scholar