Skip to main content Accessibility help
×
Home

Deposition of Tin by Electron Cyclotron Resonance - Metal Organic Molecular Beam Epitaxy

  • P. W. Wisk (a1), C. R. Abernathy (a1), S. J. Pearton (a1), F. Ren (a1), A. Katz (a1) and D. A. Bohling (a2)...

Abstract

We have investigated the feasibility of depositing TiN from nitrogen plasmas by Electron Cyclotron Resonance – Metal Organic Molecular Beam Epitaxy (ECR-MOMBE). Growth rate, index of refraction and resistivity were evaluated as a function of growth temperature and group V flow. It was found that TiN could be deposited at reasonable growth rates on either GaAs or Si substrates. However, the resistivity of the materia is quite high, >1700 µΩ-cm, probably because of significant carbon uptake into the layers.

Copyright

References

Hide All
1. Katz, A., Feingold, A., Pearton, S. J., Nakahara, S., Ellington, E., Chakrabarti, U. K., Geva, M. and Lane, E., J. Appl. Phys. 70(7) 3666 (1991).
2. Katz, A., Feingold, A., Pearton, S. J., Lane, E., Geva, M., Stevie, F. A. and Jones, K., J. Appl. Phys. 71(2) 993 (1992).
3. Suguro, K., Nakasaki, Y., Shina, S., Yoshii, T., Mariya, T. and Tango, H., J. Appl. Phys. 62, 1265 (1987).
4. Joshi, R. V., Moy, D., Brodski, S., Charai, A., Krusin-Elbaum, L., Restle, P. J., Nguyen, T. N. and Oh, C. S., Appl. Phys. Lett. 54, 1672 (1989).
5. Noel, J. P., Houghton, D. C., Este, G., Shepherd, F. R. and Plattner, H., J. Vac. Sci. Technol. A2, 284 (1984).
6. Pang, Z., Baumerzoug, M., Kruzelecky, R. V., Mascher, P. and Simmons, J. G., in press, and references therein.
7. Zhang, L. C., Liang, C. L., Cheung, S.K. and Cheung, N. W., J. Vac. Sci. Technol. B5, 1716 (1987).
8. Wittmer, M., Appl. Phys. Lett. 36, 456 (1980).
9. Cheung, N. W., Seefeld, H. Von, Nicolet, M. A., Ho, F. and Iles, P., J. Appl. Phys. 52,4297 (1981).
10. Soriano, L., Abbate, M., Fuggie, J. C., Prieto, P., Jiménez, C., Sanz, J. M., Galin, L., Hofman, S., J. Vac. Sci. Technol. A11(1) 47 (1993).
11. Geissberger, A. E., Sedler, R. A., Balazan, M. L. and Crites, J. W., J. Vac. Sci. Technol. B5, 170 (1987).
12. Akahori, T., Tanihara, A. and Tano, M., Jap. J. Appl. Phys. 30(12B) 3558 (1991).
13. Hoke, W. E., Lemonias, P. J. and Weir, D. G., J. Crystal Growth 111, 1024 (1991).
14. Paisley, M. J., Sitar, Z., Posthill, J. B. and Davis, R. F., J. Vac. Sci. Technol. A7, 701 (1989).
15. Strite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D. J., Choyke, W. J. and Morkoc, H., J. Vac. Sci. Technol. B9, 1924 (1991).
16. Wisk, P. W., Abernathy, C. R., Pearton, S. J., Ren, F., Lothian, J. R., Katz, A. and Jones, K., Mat. Res. Soc. Symp. in press.
17. Abernathy, C. R., Wisk, P. W., Pearton, S. J. and Ren, F., J. Vac. Sci. Technol. B, 10, 2153 (1992).
18. Bohling, D. A. and Abernathy, C. R., unpublished results.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed