Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T11:04:09.573Z Has data issue: false hasContentIssue false

Deposition of Thin Films of Silicon Carbide on Fused Quartz and on Sapphire by Laser Ablation of Ceramic Silicon Carbide Targets

Published online by Cambridge University Press:  01 January 1992

L. Rimai
Affiliation:
Ford Motor Co. Research Laboratory
R. Ager
Affiliation:
Ford Motor Co. Research Laboratory
J. Hangas
Affiliation:
Ford Motor Co. Research Laboratory
E. M. Loaothetis
Affiliation:
Ford Motor Co. Research Laboratory
Nayef Abu-ageel
Affiliation:
Dept of E.E., Michigan State University
M. Aslam
Affiliation:
Dept of E.E., Michigan State University
Get access

Abstract

Ablation of ceramic silicon carbide with 351 nm excimer radiation was used to depositSIC films on fused silica and on sapphire. For deposition temperatures above 850° C, diffraction shows the films to be crystalline with the [111] axis preferentially oriented normally to the film. Optical spectra show an indirect energy gap at 2.2 eV, near that for the cubic polytype, although the 200 diffractions are absent. Room temperature resistivities range between .02 to .1 Ωcm. Deposition below 600° C yields amorphous SiC with no diffraction bands, low and variable optical band gap and very high resistivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Powell, J. A. and Matus, L. G. in Amorphous and Crystalline Silicon Carbide and Related Materials, Springer Proceedings in Physics, edited by Harris, G. L. and Yang, C. Y.W. Vol. 34, pg 2, Springer, Berlin, 1989.Google Scholar
2. Powell, J. A., Larkin, D. J., Matus, L.G., Choyke, W.J., Bradshaw, J. L., Henderson, L., Yoganathan, M., Yang, J. and Pirouz, p., Appl. Phys. Lett., 56(15), 1442, 1990.Google Scholar
3. Golecki, I., Reidinger, F. and Marti, J., Appl. Phys. Lett., 60(14), 1703, 1992.Google Scholar
4. Balooch, M., Tench, R.J., Sielhaus, W. J., Allen, M.J., Connor, A. L. and Olander, D. R., Appl. Phys. Lett., 57(15), 1540, 1990.Google Scholar
5. Rimai, L., Ager, R., Logothetis, E. M., Weber, W. H. and Hangas, J., Appl. Phys. Lett. 59(18), 2266 (1991).Google Scholar
6. Rimai, L., Ager, R., Logothetis, E. M., Weber, W. H. and Hangas, J., in Wide Band Gap Semiconductors Edited by Moustakas, T. D., Pankove, J. I. and Hamakawa, Y., Mat. Res. Soc. Symposium Proceedings, Vol 242, pg 549, 1992.Google Scholar
7. Snail, K. A. and Marks, C. M., Appl. Phys. Lett. 60(25), 3135, 1992.Google Scholar
8.This novel application of the old pyrometric temperature monitoring technique, to our knowledge was first suggested in reference 11, and described independently as applied to diamond film growth in reference 13.Google Scholar
9. Brander, R. W. in Silicon Carbide 1973, Edited by Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E., pg. 8, Univ. of South Carolina Press, Columbia S.C., 1973 Google Scholar
10. Stratton, J. A., Electromagnetic Theory, 511–516, McGraw-Hill, New York, 1941.Google Scholar
11. Lubinski, A. R., Ellis, D. E. and Painter, G. S., Phys. Rev. B, 11(4), 1537 (1975)Google Scholar
12. Choyke, W. J. and Patrick, L., Phys. Rev., 187(3), 1041 (1969)Google Scholar
13. Choyke, W. J. and Patrick, L., Phys. Rev., 172(3) 769 (1968)Google Scholar
14. Bardeen, J., Blatt, F. J. and Hall, L. H., in Photoconductivity Conference, Breckenridge, R. G., Russel, B. R. and Hahn, E. E. Eds., pg. 146, John Wiley, New York 1956.Google Scholar
15. Kasmerski, L. L. in Polycrystalline and Amorphous Thin Films and Devices, Kasmerski, L. L. Ed. pg. 59, Academic Press, New York, 1980.Google Scholar