Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T19:05:34.808Z Has data issue: false hasContentIssue false

Deposition of Nanocrystalline Tin (IV) Oxide Films on Organic Self-Assembled Monolayers

Published online by Cambridge University Press:  10 February 2011

S. Supothina
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, U.S.A., mrd2@po.cwru.edu
M. R. De Guire
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, U.S.A., mrd2@po.cwru.edu
T. P. Niesen
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
J. Bill
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
A. H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, U.S.A., mrd2@po.cwru.edu
Get access

Abstract

Nanocrystalline thin films of tin (IV) oxide (cassiterite) have been deposited from aqueous solutions of tin (IV) chloride and hydrochloric acid at 80°C. Substrates were {100} single-crystal silicon wafers, with and without silanol-anchored, sulfonate-terminated organic self-assembled monolayers (SAMs). Using flowing solutions, films with thicknesses of up to 1 μtm have been grown, whereas the thickness of the films from static solutions is limited to about 80 nm. The films were characterized using transmission electron microscopy and Rutherford backscattering spectroscopy. The role of the flow rate and configuration of the deposition chamber is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chopra, K. L., Major, S. and Pandya, D. K., Thin Solid Films 102, p. 1 (1983).10.1016/0040-6090(83)90256-0Google Scholar
2. Göpel, W. and Schierbaum, K. D., Sensors and Actuators B 26–27, p. 1 (1995).10.1016/0925-4005(94)01546-TGoogle Scholar
3. Badawy, W. A., Afify, H. H, and Elgiar, E. M., J. Electrochem. Soc. 137, p. 1592 (1990).10.1149/1.2086733Google Scholar
4. Park, S. and Mackenzie, D. J., Thin Solid Films 258, p. 268 (1995).10.1016/0040-6090(94)06404-0Google Scholar
5. Stjerna, B., Granqvist, C., Seidel, A., and Haggstrom, L., J. Appl. Phys. 68, p. 6241 (1990).10.1063/1.346889Google Scholar
6. Shanthi, E., Dutta, V., Banerjee, A. and Chopra, K. L., J. Appl. Phys. 51, p. 6243 (1980).10.1063/1.327610Google Scholar
7. Kojima, M., Kato, H., Imai, A. and Yoshida, A., J. Appl. Phys. 64, p. 1902 (1988).10.1063/1.341741Google Scholar
8. Raviendra, D. and Sharma, J. K., J. Phys. Chem. Solids 46, p. 945 (1985).10.1016/0022-3697(85)90097-6Google Scholar
9. Tsukuma, K., Akiyama, T., and Imai, H., J. Non-Cryst. Solids 210, p. 48 (1997).10.1016/S0022-3093(96)00583-2Google Scholar
10. Supothina, S. and Guire, M. R. De, submitted to Thin Solid Films.Google Scholar
11. Shin, H., Collins, R. J., Guire, M. R. De, Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, p. 692 (1995).10.1557/JMR.1995.0692Google Scholar
12. Agarwal, M., Guire, M. R. De, and Heuer, A. H., J. Am. Ceram. Soc. 80, p. 2964 (1997).Google Scholar
13. Agarwal, M., Guire, M. R. De, and Heuer, A. H., Appl. Phys. Lett. 71 p. 891 (1997).10.1063/1.119679Google Scholar
14. Wang, Y., Supothina, S., Collins, R. J., Guire, M. R. De, Sukenik, C. N., and Heuer, A. H., Chem. Mater. 10, p. 2135 (1998).10.1021/cm980028yGoogle Scholar
15. Shin, H., Agarwal, M., Guire, M. R. De, and Heuer, A. H., Acta Mater. 46, p. 801 (1998).10.1016/S1359-6454(97)00258-9Google Scholar
16. Supothina, S., Ph. D. Thesis, Case Western Reserve University, Cleveland, Ohio, 1999. Google Scholar
17. Ito, K. and Shiraishi, K., Solar Energy Mater. Solar Cells 35, p. 179 (1994).10.1016/0927-0248(94)90138-4Google Scholar
18. Ito, K. and Tamaru, K., J. Mater. Sci. Lett. 13, p. 893 (1994).10.1007/BF00273241Google Scholar
19. Ito, K. and Nakamura, K., Thin Solid Films 286, p. 35 (1996).10.1016/S0040-6090(96)08856-6Google Scholar
20. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., and McVey, G. L., Science 264, p. 48 (1994).10.1126/science.264.5155.48Google Scholar