Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T22:47:38.981Z Has data issue: false hasContentIssue false

Deposition of Epitaxially Oriented Films of Cubic SiC on Silicon by Laser Ablation of Elemental Targets.

Published online by Cambridge University Press:  21 February 2011

L. Rimai
Affiliation:
Ford Research Laboratory, P.O. Box 2053 MD3028, Dearborn MI48121–2053
R. Ager
Affiliation:
Ford Research Laboratory, P.O. Box 2053 MD3028, Dearborn MI48121–2053
W. H. Weber
Affiliation:
Ford Research Laboratory, P.O. Box 2053 MD3028, Dearborn MI48121–2053
J. Hangas
Affiliation:
Ford Research Laboratory, P.O. Box 2053 MD3028, Dearborn MI48121–2053
B. D. Poindexter
Affiliation:
Ford Research Laboratory, P.O. Box 2053 MD3028, Dearborn MI48121–2053
Get access

Abstract

Silicon carbide films are grown epitaxially on crystalline silicon substrates heated above 1000 °C, by laser ablation of pure carbon targets to thicknesses between 300 and 400 nm. These films grow on top of the silicon substrate from the carbon in the ablation plume and from the silicon of the substrate. By using a method of alternate ablation of a pure carbon and a pure silicon target, similar epitaxial films can be grown to thicknesses in excess of 1 μm with part of the silicon being supplied by the ablation plume of the silicon target.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Powell, J. A. and Matus, L. G. in Amorphous and Crystalline Silicon Carbide and Related Materials, Springer Proceedings in Physics, edited by Harris, G. L. and Yang, C. Y.-W. (Springer, Berlin, 1989), Vol. 34, p. 2.Google Scholar
2. Matus, L. G. and Powell, J. A. in Amorphous and Crystalline Silicon Carbide and Related Materials, Springer Proceedings in Physics, edited by Harris, G. L. and Yang, C. Y.-W. (Springer, Berlin, 1989), Vol. 34, p. 40.Google Scholar
3. Nishino, S. and Saraie, J. in Amorphous and Crystalline Silicon Carbide and Related Materials, Springer Proceedings in Physics, edited by Harris, G. L. and Yang, C. Y.-W. (Springer, Berlin, 1989), Vol. 34, p. 45.Google Scholar
4. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).Google Scholar
5. Cheng, T. T., Pirouz, P. and Powell, J. A., in Chemistry and Defects in Semiconductor Heterostructures, edited by Kawabe, M., Sands, T. D., Weber, E. R. and Williams, R. S., Mat. Res. Soc. Symp. Proc. Vol.148, PA, (1989) p. 229.Google Scholar
6. Stecki, A. J. and Li, J. P., IEEE Trans, on Electron Devices, 39, 64, (1992).Google Scholar
7. Stecki, A. J. and Li, J. P. in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I. and Hamakawa, Y., Mat. Res Soc. Symp. Proc. Vol 242, (1992), p. 537.Google Scholar
8. Balooch, M., Tench, R. J., Sielhous, W. J., Alien, M. J., Connor, A. L. and Olander, D. R., Appl. Phys. Lett. 57, 1540 (1990).Google Scholar
9. Rimai, L., Ager, R., Logothetis, E. M., Weber, W. H. and Hangas, J., Appl. Phys. Lett. 59, 2266 (1991).Google Scholar
10. Rimai, L., Ager, R., Logothetis, E. M., Weber, W. H. and Hangas, J. in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I. and Hamakawa, Y., Mat. Res Soc. Symp. Proc. Vol 242, (1992), p. 549.Google Scholar
11. Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
12. Richter, H., Wang, Z. P. and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
13. Knight, D. S. and White, W. J., J. Mater. Res. 4, 385 (1989).Google Scholar
14. Feng, Z. C., Choyke, W. J. and Powell, J. A., J. Appl. Phys. 64, 6827 (1988).Google Scholar