Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:27:37.000Z Has data issue: false hasContentIssue false

The Density-of-States Concept Versus the Experimentally Determined Distribution of Activation Energies

Published online by Cambridge University Press:  10 February 2011

Guy J. Adriaenssens
Affiliation:
Laboratorium voor Halfgeleiderfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Heverlee-Leuven, Belgium.
Vladimir I. Arkhipov
Affiliation:
Laboratorium voor Halfgeleiderfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Heverlee-Leuven, Belgium.
Get access

Abstract

Random fluctuations of localized state energies will result in thermal release of carriers trapped in those states at shorter times than would be observed from a stationary distribution of the same energies. An experimentally observed distribution of activation energies will hence differ from the distribution of average energies of the states involved. It will also be temperature-dependent. In a-Si:H, low-frequency fluctuations with a spectrum comparable to the one of 1/f noise, can account for the measured temperature dependence of the distribution. They also explain the apparent shift in localized-state energy under steady-state illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arkhipov, V.I., Adriaenssens, G.J. and Yan, B., submitted for publication.Google Scholar
2. Yan, B. and Adriaenssens, G.J., J. Appl. Phys. 77, 5661 (1995).Google Scholar
3. Zhong, F. and Cohen, J.D. in Amorphous Silicon Technology - 1992, edited by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madan, A. and Schiff, E. (Mat. Res. Soc. Symp. Proc. 258, Pittsburgh, PA, 1992), p. 813 Google Scholar
4. Bayley, P.A., Marshall, J.M., Main, C., Webb, D.P., Swaaij, R.A.C.M.M. Van and Bezemer, J., J. Non-Cryst. Solids, ICAS16, in press (1996).Google Scholar
5. Usala, S., Adriaenssens, G.J., Öktü, Ö. and Neslgáek, M., Appl. Surf. Sci. 50, 265 (1991).Google Scholar
6. Nesládek, M., Tríska, A. and Adriaenssens, G.J., J. Non-Cryst. Solids 141, 155 (1992).Google Scholar
7. Parman, C. and Kakalios, J., Phys. Rev. Lett. 67, 2529 (1991).Google Scholar
8. Fan, J. and Kakalios, J., Phil. Mag. B 69, 595 (1994).Google Scholar
9. Eberle, W., Prettl, W. and Roizin, Y., J. Phys.: Condens. Matter 7, 8165 (1995).Google Scholar
10. Rudenko, A.I. and Arkhipov, V.I., Phil. Mag. B 45, 177 (1982).Google Scholar
11. Arkhipov, V.I. and Adriaenssens, G.J., Phil. Mag. Lett., in press (1996).Google Scholar
12. Han, D., Melcher, D.C., Schiff, E.A. and Silver, M., Phys. Rev. B 48, 8658 (1993).Google Scholar
13. Cohen, J.D. and Zhong, F., J. Non-Cryst. Solids 190, 123 (1995).Google Scholar
14. Weissman, M.B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
15. Arkhipov, V.I. and Adriaenssens, G.J., submitted for publication.Google Scholar