Skip to main content Accessibility help
×
Home

Density Functional Methods and Applications to Materials Problems

  • Y. S. Li (a1), M. A. van Daelen (a1), D. King-Smith (a1), M. Wrinn (a1), E. Wimmer (a1), J. M. Newsam (a1), T. Klitsner (a2), M. P. Sears (a2), G. Carlson (a2), J. Nelson (a2), D. C. Allan (a3) and M. P. Teter (a3)...

Abstract

Density functional theory provides a first-principles approach for computing the geometric and electronic structures, and a wealth of corresponding properties, of a wide range of materials types and compositions, including bulk solids, surfaces, defects and clusters of molecules. Parallel advances in hardware performance, implementation strategies and algorithms have all contributed to a rapid growth in the number of important applications. Recent developments under each of these themes are outlined and the breadth of current applications is illustrated by typical examples. Issues associated with the implementation and performance of density functional methods on parallel computer architectures are discussed.

Copyright

References

Hide All
1. Electronic Structure. Dynamics, and Ouantum Structural Properties of Condensed Matter, edited by Devreese, J. T. and Camp, P. V. (Plenum Press, New York, 1985).
2. Density Functional Methods in Chemistry, edited by Labanowski, J. K. and Andzelm, J. W. (Springer-Verlag, New York, 1991).
3. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).
4. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).
5. Delley, B., J. Chem. Phys. 92, 508 (1990).
6. DMol User Guide, version 2.3, San Diego: Biosym Technologies, 1993.
7. Teter, M. P., Payne, M. C., and Allan, D. C., Phys. Rev. B40, 12255 (1989).
8. Stich, I., Payne, M. C., King-Smith, R. D., Lin, J.-S., and Clarke, L. J., Phys. Rev. Lett. 68, 1351 (1992).
9. Brommer, K. D., Needels, M., Larson, B. E., and Joannopoulos, J. D., Phys. Rev. Lett. 68, 1355 (1992).
10. Theory of the Inhomogeneous Electron Gas, edited by Lundqvist, S. and March, N. H. (Plenum, New York, 1983).
11. Perdew, J. P. and Zunger, A., Phys. Rev. B23, 5048 (1981).
12. von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972).
13. Lebedev, V. I., Zh. Vychisl. Mat. Mat. Fiz. 15, 48 (1975).
14. Lebedev, V. I., Zh. Vychisl. Mat. Mat. Fiz. 16, 293 (1976).
15. Payne, M.C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J., Rev. Mod. Phys. 64, 1045 (1992).
16. Li, Y. S., Wrinn, M., Newsam, J. M., and Sears, M. P., to be published.
17. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D., Solving Problems on Concurrent Processors (Prentice Hall, New Jersey, 1988).
18. Nelson, J. S., Plimpton, S. J., and Sears, M. P., Phys. Rev. B47, 1765 (1993).
19. Li, Y. S. and Tomanek, D., presented at the 1993 MRS Fall Meeting, Boston, MA, 1993.
20. Daelen, M. A.van, Li, Y. S., Newsam, J. M., and Santen, R. A.van, to be published.
21. Allan, D.C. and Teter, M.P., J. Am. Ceram. Soc. 73 3247 (1990).
22. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterlin, W.T., Numerical Recipes: The Art of Scientific Computing (Cambridge University, Cambridge, England, 1989).
23. Snyder, K.C. and Fowler, W.B., preprint.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed