Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T06:17:19.620Z Has data issue: false hasContentIssue false

Density Functional Based Studies of Oxygen Vacancies In Crystalline Silicon Dioxide

Published online by Cambridge University Press:  22 February 2011

Mark R. Pederson
Affiliation:
Condensed Matter Physics Branch, Naval Research Laboratory, Code 4680, Washington D.C. 20375-5000
Joseph G. Harrison
Affiliation:
University of Alabama at Birmingham, Birmingham, AL 25202
Barry M. Klein
Affiliation:
Condensed Matter Physics Branch, Naval Research Laboratory, Code 4680, Washington D.C. 20375-5000
Get access

Abstract

We have performed electronic structure studies on two neutral oxygen vacancies in crystalline silicon dioxide. The idealized beta-crystobalite structure has been used as a model for the host perfect crystal. The calculations have been carried out by representing the host-defect system as a large cluster of atoms which is properly. embedded into the host crystal, with a Gaussian orbital basis used to describe the electronic states of the host and defect systems. The local density approximation with and without the self-interaction correction has been used in these calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For example, see Griscom, D. L., Mat. Res. Soc. Symp. Proc. 61, 213 (1986) and references therein.Google Scholar
2. Weeks, R. A., J. Appl. Phys. 27. 1376 (1956).Google Scholar
3. Nelson, C. M. and Weeks, R. A., J. Am. Ceram. Soc. 43, 396 (1960); R. A. Weeks, and C. M. Nelson, J. Am. Ceram. Soc. 43, 399 (1960).Google Scholar
4. Silsbee, R. H., J. Appl. Phys. 32, 1459 (1961).CrossRefGoogle Scholar
5. Griscom, D. L., Friebele, E. J., and Sigel, G. H. Jr., Solid State Commun. 15, 479 (1974).CrossRefGoogle Scholar
6. Feigl, F. J., Fowler, W. B., and Yip, K. L., Solid State Commun. 14, 225 (1974); K. L. Yip and W. B. Fowler, Phys. Rev. B 11, 2327 (1975).Google Scholar
7. Baranowski, J. M., Strzalkowski, I., Marczewski, M., an Kowalski, M., J. Appl. Phys. 61, 2904 (1987).Google Scholar
8. Rudra, J. K. and Fowler, W. B., Phys. Rev. B15 35, 8223 (1987).Google Scholar
9. Schneider, P. M. and Fowler, W. B., Phys. Rev. Lett. 36, 425 (1976); Phys. Rev. B 18, 7122 (1978).Google Scholar
10. Ciraci, S. and Batra, I. P., Phys. Rev. B 15, 4923 (1977).Google Scholar
11. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964), W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
12. Heaton, R. A., Harrison, J. G., and Lin, C. C., Solid State Commun. 41, 827 (1982), Phys. Rev. B 28, 5992 (1983).CrossRefGoogle Scholar
13. Pederson, M. R. and Klein, B. M., Submitted to Phys. Rev. B.Google Scholar
14. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
15. Harrison, J. G., Heaton, R. A., and Lin, C. C., J. Phys. B 16, 2079 (1983).Google Scholar
16. Wang, C. S. and Pickett, W. E., Phys. Rev. Lett. 51, 597 (1983); W. E. Pickett and C. S. Wang, Phys. Rev. B 30, 4719 (1984); Intl. J. Quantum Chemistry (1986).Google Scholar
17. Pederson, M. R., Ph. D. Thesis (University of Wisconsin, 1986) unpublished.Google Scholar
18. Klein, B. M., Pickett, W. E., Boyer, L. L., and Zeller, R., Phys. Rev. B 35, 5802 (1987).Google Scholar
19. Bossoli, R. B., Jani, M. G. and Halliburton, L. E., Solid State Commun. 44, 213 (1982).Google Scholar
20. O'Reilly, E. P. and Robertson, J., Phys. Rev. B 27, 3780 (1983).Google Scholar