Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:47:14.261Z Has data issue: false hasContentIssue false

Density Changes in Amorphous Pd80Si20 During Low Temperature ion Irradiation

Published online by Cambridge University Press:  16 February 2011

G. Schumacher
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, IL 60439
R.C. Birtcher
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, IL 60439
L.E. Rehn
Affiliation:
Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, Argonne, IL 60439
Get access

Abstract

Density changes in amorphous Pd80Si20 during ion irradiation below 100K were detected by in situ HVEM measurements of the changes in specimen length as a function of ion fluence. A decrease in mass density as a function of the ion fluence was observed. The saturation value of the change in mass density was determined to be approximately -1.2 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spaepen, F., Acta metall. 25, 407 (1977).Google Scholar
2. Egami, T., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworth, London, 1983) pp. 100113.Google Scholar
3. Beukel, A. van den, Zwaag, S. van der and Mulder, A.L., Acta metall. 32, 1895(1984)Google Scholar
4. Kelton, K.F. and Spaepen, F., Phys. Rev. B 30, 5516 (1984).Google Scholar
5. Taub, A.I. and Spaepen, F., Acta metall. 28, 1781 (1980).Google Scholar
6. Klaumuenzer, S. and Petry, W., Phys. Lett. 87A, 314 (1982).Google Scholar
7. Klaumuenzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Soeldner, L. and Bieger, H., Acta metall. 30, 1493 (1982).Google Scholar
8. Schumacher, G., Petry, W., Klaumuenzer, S., Wallner, G. and Weck, W., J. Physique, 12-C8, 603, (1985).Google Scholar
9. Woldt, E. and Leake, J.A., in Rapidly Quenched Metals V, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 687 Google Scholar
10. Taylor, A., Allen, C. W., and Ryan, E. A., Nucl. Instrum. Methods B 24/25, 598, (1987).Google Scholar
11. Biersack, J.P. and Haggmark, L.G., Nucl. Instr. and Meth. 174, 257 (1980).Google Scholar
12. Chen, H.S., J. Appl. Phys. 49, 3289 (1978).Google Scholar
13. Suzuki, K., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworth, London, 1983) pp. 7499.Google Scholar
14. Schumacher, G., Klaumuenzer, S., Petry, W. and Dedek, U.: J. Physics F 18, 1681 (1988).Google Scholar
15. Schumacher, G., Klaumuenzer, S., Petry, W., Wallner, G., Weck, W. and Dedek, U., Z. Phys. Chemie Neue Folge 157, 313 (1988).Google Scholar
16. Kirk, M.A. and Blewitt, T.H., J. Nucl. Mater. 108&109, 124 (1982).Google Scholar
17. Doyama, M., Yamamoto, R. and Shibuta, H., in Rapidly Quenched Metals Iy, edited by Masumoto, T. and Suzuki, K. (Sendai, Japanese Institute of Metals, 1982), p. 781.Google Scholar
18. Beukel, A. Van den, Scripta Metall. 20, 783 (1986).Google Scholar
19. Dworschak, F., Wagner, H., and Wombacher, P., Phys. Stat. Sol. 52, 103 (1972).Google Scholar
20. Wagner, H., Dworschak, F., and Schilling, W., Phys. Rev. B 2, 3856 (1970).Google Scholar