Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T20:37:07.706Z Has data issue: false hasContentIssue false

Dendritic Macromolecules: A Fourth Major Class of Polymer Architecture – New Properties Driven by Architecture

Published online by Cambridge University Press:  10 February 2011

D. A. Tomalia
Affiliation:
Center for Biologic Nanotechnology, The University of Michigan Medical School, 4027 Kresge II, 200 Zina Pitcher, Ann Arbor, MI 48109–0533 Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
S. Uppuluri
Affiliation:
Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
D. R. Swanson
Affiliation:
Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
H. M. Brothers II
Affiliation:
Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
L. T. Piehler
Affiliation:
Center for Biologic Nanotechnology, The University of Michigan Medical School, 4027 Kresge II, 200 Zina Pitcher, Ann Arbor, MI 48109–0533
J. Li
Affiliation:
Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
D. J. Meier
Affiliation:
Michigan Molecular Institute, 1910 W. St. Andrews Road, Midland, MI 48640–2696
G. L. Hagnauer
Affiliation:
Army Research Laboratory, ATTN.: AMSRL-WM-M (Materials Division), Building 4600, Aberdeen Proving Ground, MD 21005–5069
L. Balogh
Affiliation:
Center for Biologic Nanotechnology, The University of Michigan Medical School, 4027 Kresge II, 200 Zina Pitcher, Ann Arbor, MI 48109–0533
Get access

Abstract

This new architectural class of macromolecules has received substantial attention during the past decade. Three dendritic subclasses, which include (a) random hyperbranched (i.e., one-pot ABx, polymerizations), (b) dendritic grafted (i.e., Combburst® polymers) and (c) regular dendrons/dendrimers (e.g., Starburst® dendrimers) have been synthesized and characterized at a well-defined level in our laboratory. It is clear that their precisely controlled, nanoscale dimensions and architecture play critical roles in influencing physical properties and performance characteristics. Furthermore, these parameters have also distinguished dendrimers as fundamental modules for many nanotechnology applications, as well as for the construction of a new class of larger nanoscale entities which we have termed core-shell tecto(dendrimers). This account will overview these activities and focus on certain unique de Gennes dense packing (or congestion phenomena) and nanoscale container properties that have emerged from this novel architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flory, P. J., Principles of Polymer Chemistry, (Cornell University, Ithaca, New York, 1953).Google Scholar
2. Dusek, K., TRIP 5(8), 268 (1997).Google Scholar
3. Lothian-Tomalia, M. K., Hedstrand, D. M., Tomalia, D. A., Padias, A. B., and Hall, H. K. Jr, Tetrahedron 53, 15495 (1997).Google Scholar
4. Tomalia, D. A., Naylor, A. M. and Goddard, W. A. III, Angew. Chem. Int. Ed. Engl. 29(2), 138 (1990).Google Scholar
5. Hawker, C. J. and Fréchet, J. M. J., J. Am. Chem. Soc. 112, 7638 (1990).Google Scholar
6. Tomalia, D. A., Macromol. Symp. 101, 243 (1996).Google Scholar
7. Tomalia, D. A., Dvornic, P. R., Polymeric Materials Encyl.; Salamone, J. C. (editor), CRC Press Vol.3, D–E, 18141830, 1996.Google Scholar
8. Tomalia, D. A., Adv. Mater. 6, 529 (1994).Google Scholar
9. Dvornic, P. R., Tomalia, D. A., Chemistry in Britain, 30 (8), 641, (1994).Google Scholar
10. Dvornic, P. R., Tomalia, D. A., Macromol. Symp., 98,403 (1995).Google Scholar
11. Schwartz, B. L., Rockwood, A. L., Smith, R. D., Tomalia, D. A. and Spindler, R., Rapid Comm. Mass Spec., 9, 1552 (1995).Google Scholar
12. Tolic, L. P., Anderson, G. A., Smith, R. D., Brothers, H. M. II, Spindler, R., Tomalia, D. A., Intl. J. Mass Spec. Ion Processes, 165/166, 405 (1997).Google Scholar
13. Brothers, H. M. II, Piehler, L. T., Tomalia, D. A., J. of Chromatograph A, 814, 233 (1998).Google Scholar
14. Amis, E. J., Topp, A., Bauer, B. J., Polym. Mater. Sci. Eng., 77, 183 (1997).Google Scholar
15. Prosa, T. J., Bauer, N. J., Amis, E. J., Tomalia, D. A., Scherrenberg, R., J. Polym. Sci., Part B, 35, 2913 (1997).Google Scholar
16. Tomalia, D. A., Modular Chemistry, Series C: Mathematical and Physical Sciences, Ed. Michl, J., NATO ASI Series, 499, 183 (1997).Google Scholar
17. Yin, R., Zhu, Y., Tomalia, D. A., J. Am. Chem. Soc., 120, 2678 (1998).Google Scholar
18. Tomalia, D. A., Durst, D. A., Topics in Current Chemistry Vol.165, Supramolecular Chemistry I - Directed Synthesis and Molecular Recognition; Weber, E. (editor), Springer-Verlag: Berlin Heidelberg, 193313 (1993).Google Scholar
19. Balogh, L. and Tomalia, D. A., J. Am. Chem. Soc., 120, 7355 (1998).Google Scholar
20. Turro, N. J., Barton, J. K. and Tomalia, D. A., Acc. Chem. Res., 24, 332 (1991).Google Scholar
21. Esfand, R. and Tomalia, D. A., Chemistry & Industry, 11,416 (1997).Google Scholar
22. Mansfield, M. L., Rakesh, L. and Tomalia, D. A., J. Chem. Phys. 105(8), 3245 (1996).Google Scholar
23. Tomalia, D. A., Hedstrand, D. M. and Wilson, L. R., Encycl. of Polymer Science and Engineering; John Wiley: New York, 1990, Index Vol., 2 nd Ed. (see Figure 24, p. 78).Google Scholar
24. Tomalia, D. A. and Uppuluri, S. (to be reported later).Google Scholar
25. Naylor, A. M., Goddard, W. A. III, Kiefer, G. E. and Tomalia, D. A., J. Am. Chem. Soc. 111, 2339 (1989).Google Scholar
26. Gennes, P.-G. de and Hervet, H., J. Phys. Lett., 44, L351 (1983).Google Scholar