Skip to main content Accessibility help
×
Home

Degradation and SILC Effects of RPECVD sub-2.0nm Oxide/Nitride and Oxynitride Dielectrics Under Constant Current Stress

  • Yi-Mu Lee (a1), Yider Wu (a2), Joon Goo Hong (a3) and Gerald Lucovsky (a1) (a3) (a4)

Abstract

Constant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.

Copyright

References

Hide All
1. Uwasawa, K., Mogami, T., Kunio, T., and Fukuma, M., IEEE, IEDM Tech. Dig., pp.895898 (1993).
2. Hao, M., Nayak, D., and Rakkhit, R., IEEE Electron Device Lett., Vol. 18, No. 5, May (1997).
3. Liu, C., Ma, Y., Alers, G., Chang, C. P., Colonell, J. I., Lai, W. Y. C., Pai, C. S., Liu, R., Vaidya, H., and Clemens, J. T., IEEE IEDM Tech. Dig., pp. 8588 (1997).
4. Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J., Depas, M., Roussel, P. J., and Maes, H. E., IEEE Trans. Electron Devices. Vol. 45, pp. 904911, April (1998).
5. Tomita, T., Utsunomiya, H., Sakura, T., Kamakura, Y., and Taniguchi, K., IEEE Trans. Electron Devices. Vol. 46, pp. 159164, Jan. (1999).
6. Houssa, M., Mertens, P. W., and Heyns, M. M., Mater. Res. Soc. Symp. Proc., p. 307 (1999).
7. Sune, J., Mura, G., and Miranda, E., IEEE Electron Device Lett., vol. 21, p. 167, April (2000).
8. Pompl, T., Wurzer, H., Kerber, M., Wilkins, R. C. W., and Eisele, I., IEEE IRPS, p. 8287 (1999).
9. Weir, B. et al., Mater. Res. Soc. Symp. Proc., p. 301 (1999).
10. Depas, M., Nigam, T., and Heyns, M., IEEE Trans. Electron Devices. Vol. 43, pp. 14991504, Sept. (1996).
11. Guan, H., Li, M., He, Y., Cho, B. J., and Dong, Z., IEEE Trans. Electron Devices. Vol. 47, pp. 16081615, August (2000).
12. Nicollian, P. E., Hunter, W. R., and Hu, J. C., IEEE IRPS, pp. 715 (2000).
13. Nicollian, P., Rodder, M., Grider, D. T., Chen, P., Wallace, R. M., and Hattangady, S. V., IEEE IRPS, p. 400404 (1999).
14. Zous, N., Wang, T., Yeh, C. C., Tsai, C. W., and Huang, C., IEEE IRPS, p. 405408 (1999).
15. Dumin, D., and Maddux, J. R., IEEE Trans. Electron Devices, Vol. 40, No. 5, May (1993).
16. Matsuoka, T., Kakimoto, S., Nakano, M., Kotaki, H., Hayashida, S., Sugimoto, K., Adachi, K., Morishita, S., Uda, K., Sato, Y., Yamanaka, M., Ogura, T., and Takagi, J., IEEE IEDM Tech Dig., pp. 851854 (1995).
17. Weir, B. E., Silverman, P. J., Monroe, D., Krisch, K. S., Alam, M. A., Alers, G. B., Sorsch, T. W., Timp, G. L., Baumann, F., Liu, C. T., Ma, Y., and Hwang, D., IEEE, IEDM Tech Dig., pp.7376 (1997).
18. Wu, Y., Niimi, H., Yang, H., Lucovsky, G., and Fair, R. B., J. Vac. Sci. Technol. B 17 (1999).
19. Yang, H., PhD. Dissertation, NCSU (1999).
20. Guan, H., Cho, B. J., Li, M. F., Xu, Z., He, Y. D., and Dong, Z., IEEE Trans. Electron Devices., Vol. 48, No. 5, May (2001).
21. Crupi, F., Degraeve, R., Groeseneken, G., Nigam, T., and Maes, H. E., IEEE Trans. Electron Devices. Vol. 45, pp. 23292334, Nov. (1998).
22. Apte, P., Saraswat, K. C., IEEE IRPS, p. 136 (1994).
23. Yamada, R., Yugami, J., and Ohkura, M., IEEE IRPS, p. 6571 (2000).
24. Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., and Maes, H. E., IEEE IEDM Tech. Dig., pp. 863 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed