Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-28T04:26:04.116Z Has data issue: false hasContentIssue false

Defects in MBE-grown Silicon Epilayers Studied with Variable-Energy Positrons

Published online by Cambridge University Press:  25 February 2011

P.J. Simpson
Affiliation:
Dept. of Physics, University of Western Ontario, London, Ontario N6A 3K7, Canada.
P.J. Schultz
Affiliation:
Dept. of Physics, University of Western Ontario, London, Ontario N6A 3K7, Canada.
I.V. Mitchell
Affiliation:
Dept. of Physics, University of Western Ontario, London, Ontario N6A 3K7, Canada.
T.E. Jackman
Affiliation:
Microstructural Sciences Laboratory, National Research Council of Canada, Ottawa, Ontario K1A OR6, Canada.
G.C. Aers
Affiliation:
Microstructural Sciences Laboratory, National Research Council of Canada, Ottawa, Ontario K1A OR6, Canada.
Get access

Abstract

Few non-destructive techniques are available which provide information regarding defect type, concentration and depth distribution in semiconductors. The variable-energy positron beam technique has recently demonstrated a sensitivity to near surface defects and impurities at low defect concentrations. In the present study, intrinsic silicon (100) epilayers of ~3000 Å thickness grown by MBE at different temperatures were examined by this method for evidence of changing defect concentration and type.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Noel, J.P., Greene, J.E., Rowell, N.L., Kechang, S. and Houghton, D.C., Appl. Phys. Lett. 55, 1525 (1989).Google Scholar
2 Sidebotham, E.C., Peaker, A.R., Hamilton, B., Hopklnson, M., Houghton, R., Patel, G., Whall, T.E. and Parker, E.H.C. In Silicon Molecular Beam Epitaxy II. edited by Bean, J.C. and Schowalter, L.J., (Electrochemical Society, Pennlngton N.J., 1988) pg. 355.Google Scholar
3 Schultz, P.J., Lynn, K.G., Rev. Mod. Phys., 60, 701 (1988).Google Scholar
4 Tandberg, E., Schultz, P.J., Aers, G.C. and Jackman, T.E., Can. J. Phys. 67, 275282 (1989).Google Scholar
5 Schultz, P.J., Tandberg, E., Lynn, K.G., Nellson, Bent, Jackman, T.E., Denhoff, M.W. and Aers, G.C., Phys. Rev. Lett. 61, 187 (1988).Google Scholar
6 Jackman, T.E., Aers, G.C., Denhoff, M.W. and Schultz, P.J., Appl. Phys. A49, 335339 (1989).Google Scholar
7 Schultz, P.J., Nuc. Inst. Meth. B30, 94 (1988).Google Scholar
8 Valkealahti, S. and Niemlnen, R.M., Appl. Phys A 35, 95 (1984).Google Scholar
9 Fuhs, W., Holzhauer, U. and Richter, F.W., Appl. Phys. 22, 415 (1980).Google Scholar
10 Würschun, R., Bauer, W., Maier, K., Major, J., Seeger, A., Stoll, H., -D.CarstenJen, H., Decker, W., Diehl, J. and Schaefer, H.-E., In Positron Annihilation, edited by Dorikens-Vanpraet, L., Dorikens, M. and Segers, D. (World Scientific Publishing, Singapore, 1989) pp.671673; Motoko-kwete, D. Segers, M. Dorikens, L. Dorikens-Vanpraet, P. Clauws and I. Lemahieu, ibid.. pp.687–689.Google Scholar
11 Wichert, Th., Swanson, M.L. and Quenneville, A.F., Phys. Rev. Lett. 57, 1757 (1986).Google Scholar
12 Pandey, K.C., Erbil, A., Cargill III, G.S., Boehme, R.F. and Vanderbilt, D., Phys. Rev. Lett. 61, 1282 (1988).Google Scholar
13 Jackman, T.E., Houghton, D.C., Jackman, J.A., Denhoff, M.W., Kechang, S., McCaffrey, J. and Rocketl, A., J. Appl. Phys. 66, 1984 (1989).Google Scholar
14 Robblns, D.J., Pidduck, A.J., Glasper, J.L. and Young, J.M., Appl. Phys. Lett. 55, 1229 (1989) and references therein.Google Scholar