Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T10:44:11.061Z Has data issue: false hasContentIssue false

Defects and Their Origin in Thin Films of (001) Alkaline Earth Oxides

Published online by Cambridge University Press:  15 February 2011

F. J. Walker
Affiliation:
Also associated with the Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN
R. A. Mckee
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, TN 37831-6118
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, TN 37831-6118
T. G. Thundat
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, TN 37831-6118
Get access

Abstract

MgO is used as an optical isolation layer for waveguides epitaxially grown on silicon. The crystalline perfection of MgO is a critical issue because it serves as a substrate for the single crystal, perovskite guiding layer. Imperfections in the MgO will result in imperfections in the guiding layer and lead to large optical losses for the planar waveguide structure. We show that the most common defect to form in thin films of MgO are twin boundaries between {111}-type planes. The highest density of twins is observed when (001) MgO is grown directly on silicon/MgO interlayers containing barium. Twinning is shown to accommodate the large size of barium impurities incorporated in the MgO films through the formation of internal grain boundaries and open surfaces other than the growing (001) of MgO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McKee, R. A., Walker, F. J., Specht, E. D., Jellison, G. E. Jr, and Boatner, L. A., Phys. Rev. Lett. 72, 2741 (1994). F. J. Walker, R. A. McKee, Huan-wun Yen, and D. E. Zelmon, Appl. Phys. Lett. 65, p. 1495 (1994).Google Scholar
2. Tien, P. K., Ulrich, R., and Martin, R. J., Appl. Phys. Lett. 14, p. 291 (1969).Google Scholar
3. Fork, D. K., Armani-Leplingard, F., Kingston, J. J., and Anderson, G. B. in Thin Films for Integrated Optics, edited by Wessels, B. W., Marder, S. R., and Walba, D. M. (Mater. Res. Soc. Proc. 392, Pittsburgh, PA 1995), p. 189.Google Scholar
4. Harding, J. H., Rep. Prog. Phys. 53, p. 1403 (1990).Google Scholar
5. Tasker, P. W. and Stoneham, A. M., Proc. Br. Ceram. Soc. 34, p. 1 (1984).Google Scholar
6. Wolf, Dieter, Solid State Ionics 75, p. 3 (1995).Google Scholar
7. Tasker, P. W., Colbourn, E. A., and Mackrodt, W. C., J. Am. Ceram. Soc. 68, p. 74 (1985).Google Scholar
8. Tasker, P. W. and Duffy, D. M., Surf. Sci. 137, 91 (1984).Google Scholar
9. Sayle, D. C., Parker, S. C. and Harding, J. H., Phil. Mag. A 68, p. 787 (1994).Google Scholar
10. Yang, M. H. and Yang, C. P., Phys. Rev. Lett. 73, p. 1809 (1994).Google Scholar
11. McKee, R. A., Walker, F. J., Conner, J. R., Specht, E. D., and Zelmon, D. E., Appl. Phys. Lett. 59, p. 782 (1991).Google Scholar
12. McKee, R. A., List, F. A. and Walker, F. J. in Multilayers: Synthesis, Properties and Non-Electronic Applications, edited by Barbee, T. W., Spaepen, F., and Greer, L. (Mater. Res. Soc. Proc. 103, Pittsburgh, PA 1988), p. 3539.Google Scholar
13. Yang, M. H. and Flynn, C. P., Phys. Rev. Lett. 62, p. 2476 (1989). M. H. Yang and C. P. Flynn, Phys. Rev. B 41, p. 8500 (1990).Google Scholar
14. Yadavalli, S., Yang, M. H. and Flynn, C. P., Phys. Rev. B 41, 7961 (1990).Google Scholar
15. McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., Pennycook, S. J., Ravikumar, V., and Dravid, V. P., Science 266, p. 102 (1994).Google Scholar