Skip to main content Accessibility help
×
Home

Defects and Diffusion in Silicon: An Overview

  • N.E.B. Cowern (a1), G. Mannino (a1), P.A. Stolk (a1) and M.J.J. Theunissen (a1)

Abstract

At the current pace of semiconductor technology development, transistor dimensions in advanced IC products will approach the range of a few tens of nanometers within the next decade. This presents a major challenge for our understanding of defects and diffusion in these tiny devices during processing. In response, an almost explosive growth in research on process physics has taken place at universities, national institutes and industry research labs worldwide. The central issue is the phenomenon of nonequilibrium diffusion driven by processing steps such as oxide growth, high concentration gradients of impurities, and annealing of damage caused by ion implantation. Nonequilibrium diffusion arises from perturbations to the natural thermal equilibrium concentrations of point defects - interstitial atoms and vacancies - in the silicon crystal. This paper gives a snapshot of our current understanding of the atomic-scale interactions between point defects and impurity atoms, extended defects and interfaces, as revealed by recent experimental and theoretical studies. The paper emphasizes the important role played by defect cluster ripening during transient enhanced diffusion and dopant activation.

Copyright

References

Hide All
[1] Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).
[2] Hu, S.M., Materials Science and Engineering R 13, 105 (1994).
[3] Ural, A., Griffin, P.B., and Plummer, J.D., J. Apl. Phys. 85, 6440 (1999).
[4] Bracht, H., Hailer, E.E., and Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).
[5] Recent ab initio calculations suggest that for the important case of B diffusion, the migrating species is the B-I pair (Sadigh, B., Lenosky, T.J., Theiss, S.K., Caturla, M.-J., Rubia, T. Diaz de la, and Foad, M.A.; unpublished).
[6] Cowern, N.E.B., Janssen, K.T.F., Walle, G.F.A. van de, and Gravesteijn, D.J., Phys. Rev. Lett. 65, 2434 (1990).
[7] Cowem, N.E.B., Walle, G.F.A. van de, Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991).
[8] Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., Berkum, J.G.M. van, Cristiano, F., Claverie, A., and Jaraiz, M., Phys. Rev. Lett. 82, 4460 (1999).
[9] Fair, R.B., in Impurity Doping Processes in Silicon, edited by Wang, F.F.Y. (North-Holland, Amsterdam, 1991), page 315.
[10] Bracht, H., Stolwijk, N.A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995).
[11] Bork, I. and Schwerin, A. v., Mat. Res. Soc. Symp. Proc. 532, 29 (1998).
[12] Larsen, A. Nylandsted, Larsen, K. Kyllesbech, Andersen, P.E., and Svensson, B.G., J. Appl. Phys. 73, 691 (1993).
[13] Scholtz, R., Gésele, U., Huh, J.Y, and Tan, T.Y, Appl. Phys. Lett. 72, 200 (1998).
[14] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Haynes, T.E., Jackson, J., Erokhin, Yu.E., and Poate, J.M., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultra-Shallow Doping Profiles in Semiconductors (Research Triangle Park, North Carolina, 1997).
[15] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Hemer, S.B., Fiory, A.T., and Haynes, T.E., Appl. Phys. Lett. 74, 2435 (1999); A. Agarwal, H.-J. Gossmann, and D.J. Eaglesham, Appl. Phys. Lett. 74, 2331 (1999).
[16] Dunham, S.T., Chakravathi, S., and Gencer, A.H., Proc. International Electron Devices Meeting (San Francisco, CA, 6–9 Dec., 1998).
[17] Cowem, N.E.B., Theunissen, M.J.J., Roozeboom, F., and Berkum, J.G.M. van, Appl. Phys. Lett. (in press).
[18] TSUPREM4 User Manual (Avant! TCAD Business Unit, CA, 1998).
[19] Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).
[20] Claverie, A., Assayag, G. Ben, Bonafos, C., Cristiano, F., Colombeau, B., Omri, M., and Mauduit, B. de, submitted to Materials Science in Semiconductor Engineering; A. Claverie, these Proceedings.
[21] Kohyama, M. and Takeda, S., Phys. Rev. B 46, 12305 (1992); ibid., Phys. Rev. B 51, 13111 (1995).
[22] Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).
[23] Cowem, N.E.B., Walle, G.F.A. van de, Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).
[24] Huizing, H.G.A., Visser, C.C.G., Cowern, N.E.B., Stolk, P.A., and Kruif, R.C.M. de, Appl. Phys. Lett. 69, 1211 (1996).
[25] Chao, H.S., Griffin, P.B., Plummer, J.D. and Rafferty, C.S., Appl. Phys. Lett. 69, 2113 (1996).
[26] Li, Jinghong and Jones, K.S., Appl. Phys. Lett. 73, 3748 (1998).
[27] Lee, Y.H., Appl. Phys. Lett. 73, 1119 (1998).
[28] Arai, N., Takeda, S., and Kohyama, M., Phys. Rev. Lett. 78, 4265 (1997).
[29] Benton, J.L., Halliburton, K., Libertino, S., Eaglesham, D.J., and Coffa, S., J. Appl. Phys. 84, 4749 (1998).
[30] Mannino, G., Cowem, N.E.B., Stolk, P.A., Huizing, H.G.A., Roozeboom, F., Berkum, J.G.M. van, Boer, W. de, Claverie, A., Cristiona, F., and Jaraiz, M. (these Proceedings).
[31] Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., and Poate, J.M., Mat. Res. Soc. Symp. Proc. 532, 43 (1998).
[32] Cuendet, N., Halicioglu, T., and Tiller, W.A., Appl. Phys. Lett. 68, 19 (1996).
[33] Magna, A. La, Coffa, S., and Libertino, S., in ‘Silicon Front-End Technology: Materials Processing and Modeling’, MRS Spring Meeting, San Francisco, 1999, paper S5.4.
[34] Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J., and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).
[35] Caturla, M.J., Johnson, M.D., and Rubia, T. Diaz de la, Appl. Phys. Lett. 72, 2736 (1998).
[36] Rousseau, P.M., Griffin, P.B., Fang, W.T., and Plummer, J.D., J. Appl. Phys. 84, 3593 (1998).

Defects and Diffusion in Silicon: An Overview

  • N.E.B. Cowern (a1), G. Mannino (a1), P.A. Stolk (a1) and M.J.J. Theunissen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed