Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T09:22:24.128Z Has data issue: false hasContentIssue false

Defect Structures and Electrical Behavior of Rapid Thermally Annealed Ion Implanted Silicon

Published online by Cambridge University Press:  28 February 2011

D. K. Sadana*
Affiliation:
IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The importance of the knowledge of implantation induced damage structures in annealing studies is emphasized. The existence of various observed microstructures is reviewed and their distributions are presented schematically. It was found that although the usefulness of RTA in controlling dopant profiles is indisputable, the control of microstructure by RTA especially in “non-amorphized” or incompletely amorphized Si samples is questionable. Significance of complete surface amorphization to achieve better structural perfection on subsequent RTA or FA is discussed. An attempt was made to explain the published electrical data on rapid thermally annealed B+ and As+ implanted Si based on expected location and annealing behavior of defects for such implants. Recent structural and electrical results from B implanted pre-amorphized Si are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gat, A., IEEE EDL 2, 85 (1981).Google Scholar
[2] Wilson, S.R., Gregory, R. B., Paulson, W. M., Hamdi, A. M., McDaniel, F. D., App Phy.Lett. 4, 978 (1982).Google Scholar
[3] Sedgwick, T. O., J.Electrochem. Soc. 130, 484 (1983).Google Scholar
[4] Gibbons, J. F., Dobin, D. M., Greiner, M. C., Hoyt, J. L., Opyd, W. G., Proc. MRS 23, 37 (1983).Google Scholar
[5] Fulks, R. T., Powell, R. A. and Stacy, W. T., IEEE EDL–3 179 (1982).Google Scholar
[6] Hara, T., Suzuki, H., Furukawa, M., and Amemiya, K., Jap. J. App. Phy. 22, L340 (1983).Google Scholar
[7] Sadana, D. K., Shatas, S. and Gat, A., Proc. Inst. Phy. (London), 67, 143 (1983).Google Scholar
[8] Seidel, T. E., Lischner, D. J., Pai, C. S., Knoell, R. V. and Maher, D. M., Nucl. Inst. & Meth. B7, 251 (1985)Google Scholar
[9] Moslehi, M. M., Proc. SPIE 623, 92 (1986).Google Scholar
[10] d'Heurle, F. M., Hodgson, R. T. and Ting, C. Y., Proc. MRS. 52, 261 (1986).Google Scholar
[11] Davies, J. A., Denhartog, J., Eriksson, L. and Mayer, J. W., Can. J. Phy, 45, 4053 (1967).Google Scholar
[12] Mayer, J. W., Eriksson, L., Picraux, S. T. and Davies, J. D., Can J. Phy. 46, 663 (1968).Google Scholar
[13] Fletcher, J. and Booker, G. R., Proc. 9th Intern Conf. on Elec. Micros. (Toronto, Canada), 1, 364 (1978).Google Scholar
[14] Ion Implantation in Semiconductors, Mayer, J. W., Eriksson, L. and Davies, J. A. (academic Press, New York), 1970, Chapter 5.Google Scholar
[15] Wu, N. R., Sadana, D. K. and Washburn, J., App. Phys. Lett. 44, 782 (1984).Google Scholar
[16] Parsons, J. R., Phil Mag. 12, 1159 (1965).Google Scholar
[17] Davidson, S. M. and Booker, G. R., Rad. Eff., 6, 33 (1970).Google Scholar
[18] Hofker, W. K., Phil. Res. Rept. Suppl. 8 (1975).Google Scholar
[19] Sadana, D. K., Washburn, J. and Booker, G. R., Phil. Mag B46, 611 (1982).Google Scholar
[20] Sadana, D. K., Wilson, M.C., Booker, G. R., and Washburn, J., J. Electrochem. Soc. 127, 1589 (1980).Google Scholar
[21] Carter, C., Maszara, W., Sadana, D. K., Rozgonyi, G. A., Liu, J. and Wortman, J., App. Phy. Lett. 44, 459 (1983).Google Scholar
[22] Sadana, D. K., Strathman, M., Washburn, J., and Booker, G. R., J. App. Phys, 51, 5718 (1980).Google Scholar
[23] Sadana, D. K., Norcott, M. H., Wilson, R. G. and Dahman, U., App. Phys. Lett. 49, 1169 (1986).Google Scholar
[24] Sands, T., Washburn, J., Myers, E. and Sadana, D. K., Nucl. Inst. & Meth. B7/8, 337 (1985).Google Scholar
[25] Sadana, D. K., Maszara, W., Wortman, J., Rozgony, G. A., and Chu, W. K., J. Electrochem. Soc. 131, 943 (1984).Google Scholar
[26] Maher, D. M., Knoell, R. V., Ellington, M. B. and Jacobson, D. C., Proc. MRS 52, 93 (1986).Google Scholar
[27] Maszara, W., Sadana, D. K., Rozgonyi, G. A., Sands, T. and Washburn, J., Proc. MRS. 35, 277 (1984).Google Scholar
[28] Michel, A. E. and Sedgwick, T. O. (private communication)Google Scholar
[29] Ho, C. C., Kwor, R., Araujo, C. and Gelpy, J., Proc. MRS 52, 225 (1986).Google Scholar
[30] Lietoila, A., Gibbons, J. F. and Sigmon, T. W., App. Phys. Lett. 36, 765 (1980).Google Scholar
[31] Delfino, M., Sadana, D. K. and Morgan, A., App. Phys. Lett. 49, 575 (1986).Google Scholar
[32] Sands, T., Washburn, J., Gronsky, R., Maszara, W., Sadana, D. K. and Rozgonyi, G. A., App. Phys. Lett. 45, 982 (1984);Google Scholar
[32a] Proc. 13th Intern Conf. on Defects in Semiconductors, 1984 (AIME, New York, 1985, p.530).Google Scholar