Skip to main content Accessibility help
×
Home

Defect population and electrical properties of Ar+-laser crystallized polycrystalline silicon thin films

  • S. Christiansen (a1) (a2), M. Nerding (a1), C. Eder (a1), G. Andrae (a3), F. Falk (a3), J. Bergmann (a3), M. Ose (a3) and H. P. Strunk (a1)...

Abstract

We crystallize amorphous silicon (a-Si) layers (thicknesses: ∼300nm and ∼1300nm for comparison) that are deposited on glass substrates (Corning 7059) by low pressure chemical vapor deposition using a continuous wave Ar+-laser. We scan the raw beam with a diameter of ∼60νm in single traces and traces with varying overlap (30-60%). With optimized process parameters (fluence, scan velocity, overlap) we achieve polycrystalline Si with grains as wide as 100νm. The grain boundary population is dominated by first and second order twin boundaries as analyzed by electron backscattering analysis in the scanning electron microscope and convergent beam electron diffraction in the transmission electron microscope. These twins are known not (or only marginally) to degrade the electrical properties of the material. In addition to twins, dislocations and twin lamellae occur at varying densities (depending on grain orientation and process parameters). The recombination activity of the defects is analyzed by EBIC and according to these measurements crystallization receipts are defined that yield the reduction of electrically detrimental defects.

Copyright

References

Hide All
[1] Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Gowers, J. P., IEEE Trans. Electr. Dev. 40 (2), 407 (1993)
[2] Mei, P., Boyce, J. B., Hack, M., Lujan, R., Johnson, R. I., Anderson, G. B., Fork, D. K., and Ready, S. E., Appl. Phys. Lett. 64 (9), 1132 (1994)
[3] Im, J. S., Kim, H. J., and Thomson, M. O., Appl. Phys. Lett. 63, 1969 (1993); J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song, and H. S. Cho, phys. stat. sol. (a) 166, 603 (1998)
[4] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P., J.Appl.Phys. 85, 4010 (1999); J. R. Köhler, R. Dassow, R. B. Bergmann, J. Krinke, H. P. Strunk, and J. H. Werner, Thin Solid Films 337, 129 (1999);
[5] Andrä, G., Bergmann, J., Falk, F., Ose, E., Stafast, H., phys.stat.sol. (a) 166, 629 (1998); G. Andrä, J. Bergmann, F. Falk, and E. Ose, Thin Solid Films 318 (1-2), 42-45 (1998)
[6] Evans, P.V., Smith, D.A., Thompson, C.V., Appl.Phys.Lett. 60, 439 (1992)
[7] Bonnel, M., Duhamel, N., Haji, L., Loisel, B., Stoemenos, J., Electron. Device Letters 14, 551 (1993)
[8] Sameshima, T., Hara, M., and Usui, S., Jpn. J. Appl. Phys., Part 1 28, 1789 (1989).
[9] Bergmann, R. B., Köhler, J., Dassow, R., Zaczek, C., and Werner, J. H., phys. stat. sol. (a) 166, 587 (1998)
[10] Werner, J. H., in Structure and Properties of Dislocations in Semiconductors, edited by Roberts, S. G. (Institute of Physics, Bristol, 1989), Vol. 104, pp. 63; J. H. Werner and N. E. Christensen, “Classification of Grain Boundary Activity in Semiconductors,” in Polycrystalline Semiconductors II, edited by J. H. Werner and H. P. Srunk (Springer Verlag, Berlin, 1991), Vol. 54 [11] S. Serikawa, IEEE Trans. Electron Devices 36, 1929 (1989)
[12] Cunningham, B., Strunk, H., and Ast, D. G., Appl. Phys. Lett. 40 (3), 237 (1982)
[13] Voigt, A., Blockgegossenes Silizium für die Photovoltaik: Struktur und elektrische Eigenschaften von Defekten (Vol. 2 Ser. Mikrostrukturelle Materialforschung, Strunk, H.P. ed., Verlag Lehrstuhl für Mikrocharakterisierung, Erlangen, Germany, 1996; ISBN3-932392-01-9)
[14] Bary, A., Thercey, B., Poullain, G., Chermant, J. L., and Nouet, G., Revue Phys. Appl. 22, 597 (1987)
[15] Liu, F., Mostoller, M., Milman, V., Chisholm, M.F., Kaplan, T., Phys.Rev. B 51, 17192 (1995); T.S. Fell, P.R. Wilshaw, M.D. DeCoteau, phys.stat.sol.(a), 138, 695 (1993)
[16] Watanabe, H., Miki, H., Sugai, S., Kawasaki, K., Kioka, T., Jpn.J.Appl.Phys. 33, 4491 (1994)
[17] Götz, G., Appl.Phys. A 40, 29 (1986)
[18] Jackson, K.A., Chalmers, B., Canadian Journal of Physics 34, 173 (1956)
[19] Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970)
[20] Voigt, A., Orientation Analysis Software (University Erlangen,1996)
[21] Hull, D., Bacon, D.J., Introduction to dislocations, in: Series on Materials Science and Technology Vol. 37, 1984
[22] A full description of this type of grain boundary would additionally require the identification of the contact planes in the adjacent grains [19].
[23] Higher order twins form by subsequent twinning operations or by reaction of lower order twins, e.g. a Σ=3 and a Σ=9 boundary form a Σ=27 boundary or a Σ=27 and a Σ=3 boundary form a Σ=81 boundary.
[24] Kohyama, M. and Yamamoto, R., Phys. Rev. B 49, 17102 (1994); M. Kohyama and R. Yamamoto, Phys. Rev. B 50, 8502 (1994)
[25] Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., Chew, N.G., Phys.Rev.Lett. 52, 2360 (1984); J.C.c. Fan, J.H. Zeiger, R.P. Gale, R.P. Chapman: Phys.Rev.Lett. 36, 158 (1980)
[26] Batstone, J. L., Phil. Mag. A 67, 51 (1993)
[27] Rocher, A., Fontaine, C., Dianteill, C., Inst. Phys. Conf. Ser. 60, 289 (1981)
[28] d'Aragona, F. Secco, J.Electrochemical Soc. 119, 948 (1972)
[29] Möller, H.J., Semiconductors for Solar Cells (Artech House Inc., Norwood MA, 1993
[30] Frank, F.C., Read, W.T., in: Symp. Plastic Deformation of Crystalline Solids, Carnagie Inst. Technol., Pittsburgh 1950 (p.44)

Defect population and electrical properties of Ar+-laser crystallized polycrystalline silicon thin films

  • S. Christiansen (a1) (a2), M. Nerding (a1), C. Eder (a1), G. Andrae (a3), F. Falk (a3), J. Bergmann (a3), M. Ose (a3) and H. P. Strunk (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed