Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-08T11:09:57.168Z Has data issue: false hasContentIssue false

Defect Engineering and Atomic Relocation Processes in Impurity-Free Disordered GaAs and AlGaAs

Published online by Cambridge University Press:  01 February 2011

P. N. K. Deenapanray
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
M. Krispin
Affiliation:
Lehrstuhl für Experimentalphysik IV, Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany
W. E. Meyer
Affiliation:
Department of Physics, University of Pretoria, Pretoria 0002, South Africa
H. H. Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
F. D. Auret
Affiliation:
Department of Physics, University of Pretoria, Pretoria 0002, South Africa
Get access

Abstract

Impurity-free disordering (IFD) of GaAs and AlxGa1-xAs epitaxial layers using SiOx capping in conjunction with annealing was studied by deep level transient spectroscopy (DLTS) and capacitance-voltage (C-V) measurements. Three dominant electron traps S1 (EC – 0.23 eV), S2* (EC – 0.53 eV), and S4 (EC – 0.74 eV) are created in disordered n-type GaAs. The electron emission rate of S1 is enhanced in the presence of an externally applied electric field. We propose that S1 is a defect that may involve As-clustering or a complex of arsenic interstitials, Asi, and the arsenic-antisite, AsGa. S2* is shown to be the superposition of two defects, which may be VGa-related. S4 is identified as the defect EL2. Our preliminary results indicate that the same set of defects is created in disordered n-type AlxGa1-xAs, with S1 pinned to the conduction band edge, while S2* and S4 are pinned relative to the Fermi level. In contrast to disordering in n-type GaAs, IFD of p-type GaAs results in the pronounced increase in the free carrier concentration in the near-surface region of the disordered layer. Two electrically active defects HA (EV + 0.39 eV) and HB2 (EV + 0.54 eV), which we have attributed to Cu- and Asi/AsGa-related levels, respectively, are also observed in the disordered p-GaAs layers. IFD causes segregation of Zn dopant atoms and Cu towards the surface of IFD samples. This atomic relocation process poses serious limitations regarding the application of IFD to the band gap engineering of doped GaAs-based heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a comprehensive review of impurity-free disordering see, Semiconductor Quantum Wells Intermixing (Optoelectronic Properties of Semiconductors and Superlattices, Vol. 8), ed. Li, E. H. (Gordon and Breach, Amsterdam, 2000), and Quantum Well Intermixing for Photonics, ed. E. H. Li (SPIE, Bellingham, 1997).Google Scholar
2. Marsh, J. H., Semicond. Sci. Technol. 8, 1136 (1993).Google Scholar
3. Fu, L., Deenapanray, P.N.K., Tan, H.H., Jagadish, C., Dao, L.V., Gal, M., Appl. Phys. Lett. 76, 837 (2000).Google Scholar
4. Deenapanray, P.N.K., Tan, H.H., Cohen, M.I., Gaff, K., Petravic, M., Jagadish, C., J. Electrochem. Soc. 147, 1950 (2000).Google Scholar
5. Deenapanray, P.N.K., Tan, H.H., Fu, L., Jagadish, C., Electrochem. Solid-State Lett. 3, 196 (2000).Google Scholar
6. Deenapanray, P.N.K., Jagadish, C., Electrochem. Solid-State Lett. 4, G11 (2001); J. Vac. Sci. Technol. B 19, 1962 (2001).Google Scholar
7. Yuan, S., Kim, Y., Jagadish, C., Burke, P.T., Gal, M., Zou, J., Cai, D.Q., Cockayne, D.J.H., Cohen, R.M., Appl. Phys. Lett. 70, 1269 (1997).Google Scholar
8. Deenapanray, P.N.K., Fu, L., Petravic, M., Jagadish, C., Gong, Bin, Lamb, R.N., Surf. Interface Anal. 29, 754 (2000).Google Scholar
9. Cohen, R.M., Li, Gang, Jagadish, C., Burke, P.T., Gal, M., Appl. Phys. Lett. 73, 803 (1998)Google Scholar
10. Cohen, R.M., Mater. Sci. Eng. R 20, 167 (1997).Google Scholar
11. Bürkner, S., Maier, M., Larkins, E.C., Rothemund, W., O'Reilly, E.P., Ralston, J.D., J. Electron. Mater. 24, 805 (1995).Google Scholar
12. Saher Helmy, A., Murad, S.K., Bryce, A.C., Aitchison, J.S., Marsh, J.H., Hicks, S.E., Wilkinson, C.D.W., Appl. Phys. Lett. 74, 732 (1999).Google Scholar
13. Teng, J.H., Chua, S.J., Li, G., Saher Helmy, A., Marsh, J.H., Appl. Phys. Lett. 76, 1582 (2000).Google Scholar
14. Saher Helmy, A., Aitchison, J.S., Marsh, J.H., Appl. Phys. Lett. 71, 2998 (1997).Google Scholar
15. Pépin, A., Vieu, C., Schneider, M., Launois, H., and Nissim, Y., J. Vac. Sci. Technol. B 15, 142 (1997).Google Scholar
16. Ooi, B. S., McIlvaney, K., Street, M. W., Saher Helmy, A., Ayling, S. G., Bryce, A. C., Marsh, J. H. and Roberts, J. S., IEEE J. Quantum Electron. 33, 1784 (1997).Google Scholar
17. Deppe, D. G., Guido, L. J., Holonyak, N. Jr, Hsieh, K. C., Burnham, R. D., Thorton, R. L. and Paoli, T. L., Appl. Phys. Lett. 49, 510 (1986).Google Scholar
18. Fu, L., Wong-Leung, J., Deenapanray, P. N. K., Tan, H. H., Jagadish, C., Gong, Bin, Lamb, R. N., Cohen, R. M., Reichert, W., Dao, L. V. and Gal, M., J. Appl. Phys. 92, 3579 (2002).Google Scholar
19. Fu, L., Lever, P., Tan, H. H., Jagadish, C., Reece, P. and Gal, M., Appl. Phys. Lett. 82, 2613 (2003).Google Scholar
20. Cusumano, P., Ooi, B.S., Saher Helmy, A., Ayling, S. G., Bryce, A. C., Marsh, J. H., Voegele, B. and Rose, M. J., J. Appl. Phys. 81, 2445 (1997).Google Scholar
21. Fu, L., Deenapanray, P. N. K., Tan, H. H., Jagadish, C., Dao, L. V. and Gal, M., Appl. Phys. Lett. 76, 837 (2000).Google Scholar
22. Fu, L., Heijden, R. W. v. d., Tan, H. H., Jagadish, C., Dao, L. V. and Jagadish, C., Appl. Phys. Lett. 80, 1171 (2002).Google Scholar
23. Teng, J. H., Chua, S. J., Huang, Y. H., Li, G., Zhang, Z. H., Saher Helmy, A. and Marsh, J. H., J. Appl. Phys. 88, 3458 (2000).Google Scholar
24. Deenapanray, P. N. K., Svensson, B. G., Tan, H. H. and Jagadish, C., Jpn. J. Appl. Phys. 42, 1158 (2003).Google Scholar
25. Buda, M., Hay, J., Tan, H. H., Fu, L., Jagadish, C., Reece, P. and Gal, M., J. Electrochem. Soc. 150, G481 (2003).Google Scholar
26. Grimmeiss, H. G., Ann. Rev. Mater. Sci. 7, 341 (1977).Google Scholar
27. Corbett, J. W., Karins, J. P. and Tan, T. Y., Nucl. Instrum. Methods 182–183, 457 (1981).Google Scholar
28. Zohta, Y. and Watanabe, M. O., J. Appl. Phys. 53, 1890 (1982).Google Scholar
29. Lefevre, H. and Schultz, M., Appl. Phys. 12, 45 (1977).Google Scholar
30. Martin, G. M., Mitonneau, A. and Mircea, A., Electron. Lett. 13, 191 (1977).Google Scholar
31. Deenapanray, P. N. K., Tan, H. H., Jagadish, C. and Auret, F. D., Appl. Phys. Lett. 77, 626 (2000).Google Scholar
32. Deenapanray, P. N. K., Tan, H. H., Jagadish, C. and Auret, F. D., J. Appl. Phys. 88, 5255 (2000).Google Scholar
33. von Bardeleben, H. J., Stiévenard, D., Deresmes, D., Huber, A. and Bourgoin, J. C., Phys. Rev. B 34, 7192 (1986).Google Scholar
34. Ito, A., Kitagawa, A., Tokuda, Y., Usami, A., Kano, H., Noge, H. and Wada, T., Semicond. Sci. Technol. 4, 416 (1989).Google Scholar
35. Deenapanray, P. N. K., Gong, Bin, Lamb, R. N., Martin, A., Fu, L., Tan, H. H. and Jagadish, C., Appl. Phys. Lett. 80, 4351 (2002).Google Scholar
36. Makram-Ebeid, S., Gautard, D., Devillard, P. and Martin, G. M., Appl. Phys. Lett. 40, 160 (1982).Google Scholar
37. Doshi, S., Deenapanray, P. N. K., Tan, H. H. and Jagadish, C., J. Vac. Sci. Technol. B 21, 198 (2003).Google Scholar
38. Deenapanray, P. N. K., Meyer, W. E., Auret, F. D., Krispin, M. and Jagadish, C., Physica B (in press).Google Scholar
39. Zhu, Q. S., Hiramatsu, K., Sawaki, N., Akasaki, I. and Liu, K. N., J. Appl. Phys. 73, 771 (1993).Google Scholar
40. Deenapanray, P. N. K., Lay, M., Åberg, D., Tan, H. H., Svensson, B. G., Auret, F. D. and Jagadish, C., Physica B 308–310, 776 (2001).Google Scholar
41. Landman, J. I., Morgan, C. G., Schick, J. T., Papoulias, P. and Kumar, A., Phys. Rev. B 55, 15581 (1997).Google Scholar
42. Stellmacher, M., Bisaro, R., Galtier, P., Nagle, J., Khirouni, K. and Bourgoin, J. C., Semicond. Sci. Technol. 16, 440 (2001).Google Scholar
43. Zollo, G. and Nieminen, R. M., J. Phys.: Condens. Matter 15, 843 (2003).Google Scholar
44. Zhang, M. H. et al., Phys. Rev. B 63, 115324 (2001).Google Scholar
45. Staab, T. E. M., Nieminen, R. M., Lysberg, M., Gebauer, J. and Frauenheim, Th., Paper presented at The 22nd International Conference on Defects in Semiconductors, Aarhus, Denmark, July 28 – August 1, 2003.Google Scholar
46. Anand, S., Carlsson, N., Pistol, M-E., Samuelson, L. and Seifert, W., Appl. Phys. Lett. 67, 3016 (1996).Google Scholar
47. Dobaczewski, L., Kaczor, P., Hawkins, I. D. and Peaker, A. R., J. Appl. Phys. 76, 194 (1994).Google Scholar
48. Deenapanray, P. N. K. and Auret, F. D., unpublished.Google Scholar
49. Kuzuhara, M., Nozaki, T. and Kamejima, T.., J. Appl. Phys. 66, 5833 (1989).Google Scholar
50. Deenapanray, P. N. K., Krispin, M., Tan, H. H. and Jagadish, C., unpublished.Google Scholar
51. Van Vechten, J. A., J. Phys.: Condens. Matter 1, 5171 (1989).Google Scholar
52. Laine, T., Mäkinen, J., Saarinen, K., Hautojärvi, P., Corbel, C. and Gibart, P., Mater. Sci. Forum 196–201, 1073 (1995).Google Scholar
53. Haddara, Y. M., Deal, M. D. and Bravman, J. C., Appl. Phys. Lett. 68, 1939 (1996).Google Scholar
54. Deenapanray, P. N. K., Coleman, V. A. and Jagadish, C., Electrochem. Solid-State Lett. 6, G37 (2003).Google Scholar
55. Mitonneau, A., Martin, G. M. and Mircea, A., Electron. Lett. 13, 666 (1977).Google Scholar
56. Lagowski, J., Lin, D. G., Chen, T.-P., Skowronski, M. and Gatos, H. C., Appl. Phys. Lett. 47, 929 (1985).Google Scholar
57. Deenapanray, P. N. K., Martin, A., Doshi, S., Tan, H. H. and Jagadish, C., Appl. Phys. Lett. 81, 3573 (2003).Google Scholar
58. Krause-Rehberg, R., Petters, K. and Gebauer, J., Physica B 273–274, 714 (1999).Google Scholar
59. Ky, N. H., Pavesi, L., Araújo, D., Ganière, J. D. and Reinhart, F. K., J. Appl. Phys. 69, 7585 (1991).Google Scholar