Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:05:18.942Z Has data issue: false hasContentIssue false

Defect Distribution And Metastability in Chalcopyrite Semiconductors

Published online by Cambridge University Press:  10 February 2011

T. Walter
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik Pfaffenwaldring 47, D 70569 Stuttgart, Germany
R. Herberholz
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik Pfaffenwaldring 47, D 70569 Stuttgart, Germany
C. Müller
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik Pfaffenwaldring 47, D 70569 Stuttgart, Germany
H. W. Schock
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik Pfaffenwaldring 47, D 70569 Stuttgart, Germany
Get access

Abstract

Deep levels in chalcopyrite based heterojunctions are investigated by capacitance techniques. A method is presented which allows the determination of defect distributions from admittance measurements. For CuInSe2 a defect level at 280 meV above the valence band with an attempt to escape frequency of about 1011 s-1 is detected. A characteristic defect structure consisting of a shallow defect level and a broad deep structure is observed for Cu(In, Ga)Se2. The depth of the shallow defect is affected by annealing treatments which are necessary to achieve the optimum performance of the devices. CulnS2grown under an excess of CuS exhibits a high density of shallow defects whereas for Cu-poor CuInS2 defects close to midgap position with a large capture cross section are observed. These defects are metastable with respect to current injection and illumination relaxing to the equilibrium state around room temperature. The increase of the defect density after illumination results in a reduced bucking current. CV measurements can be interpreted in terms of a high density of deep states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M.A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Kaine, J., L.Wang, J.Scofield, R.Noufi, in Proc. 1st World Conf. on Photovoltaic Energy Conversion, Hawaii, 1994, p. 68 Google Scholar
2. Hedström, J., Olsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., Schock, H.W., in Proc. 23rd IEEE Photovoltaic Specialists Conf., Louisville, 1993, p. 364 Google Scholar
3. Walter, T., Köble, CH., Menner, R., Schock, H.W., in Proc. 12th EC Photovoltaic Solar Energy Conf., Amsterdam, 1994, p. 1755 Google Scholar
4. Herberholz, R., Walter, T., Schock, H.W., J.Appl.Phys. 76(5), 1994, p.2904 Google Scholar
5. Igalson, M., presented at the ICTMC 10, Stuttgart, 1995; to be published in Cryst.Res.- Technol.Google Scholar
6. Schmitt, M., Rau, U., Parisi, J., presented at the 13th EC Photovoltaic Solar Energy Conf., Nice, 1995 Google Scholar
7. Submitted for publication in Journal of Applied PhysicsGoogle Scholar
8. Oheda, H., J.Appl.Phys. 52, 1981, p. 6693 Google Scholar
9. Walter, T., Ruckh, M., Velthaus, K.O., Schock, H.W., in Proc. 11th EC Photovoltaic Solar Energy Conf., Montreux, 1992, p. 124 Google Scholar
10. Herberholz, R., Walter, T., Schock, H.W., presented at the ICTMC 10, Stuttgart, 1995; to be published in Cryst.Res.Technol.Google Scholar
11. Hariskos, D., Rückh, M., Rfihle, U., Walter, T., Schock, H.W., in Proc. 1st World Conf. on Photovoltaic Energy Conversion, Hawaii, 1994, p. 91 Google Scholar
12. Kimerling, L.C., J.Appl.Phys. 45, 1974, p. 1839 Google Scholar
13. Cohen, J.D., Leen, T.M., Zhong, F., J.Non-Cryst. Solids 327, 1993, p. 164 Google Scholar