Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T23:27:01.622Z Has data issue: false hasContentIssue false

Defect Complexes and Non-Equilibrium Processes Underlying the P-Type Doping of GaN

Published online by Cambridge University Press:  15 February 2011

Fernando A. Reboredo
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
Sokrates T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, pantelides@vanderbilt.edu
Get access

Abstract

It is well known that hydrogen plays a key role in p-type doping of GaN. It is believed that H passivates substitutional Mg during growth by forming a Mgs-N-Hi complex; in subsequent annealing, H is removed, resulting in p-type doping. Several open questions have remained, however, such as experimental evidence for other complexes involving Mg and H and difficulties in accounting for the relatively high-temperature anneal needed to remove H. We present first principles calculations in terms of which we show that the doping process is in fact significantly more complex. In particular, interstitial Mg plays a major role in limiting p-type doping. Overall, several substitutional/interstitial complexes form and can bind H, with vibrational frequencies that account for hitherto unidentified observed lines. We predict that these defects, which limit doping efficiency, can be eliminated by annealing in an atmosphere of H and N prior to the final anneal that removes H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys Lett. 64, 1687 (1994); S. Nakamura et al., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Vechten, J. A.Van, Zook, J. D., Horning, R. D. and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992); M. Johnson and D. P. Bour, Appl. Phys. Lett. 68, 3470 (1996).Google Scholar
3. Brandt, M.S. et al., Appl. Phys Lett. 64, 2264 (1994); M. S. Brandt et al., Phys. Rev. B 49, 14758 (1994) and references therein.Google Scholar
4. Goetz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996); W. Goetz, N. M. Johnson, D. P. Bour, M. D. McCluskey, and E. E. Haller, Appl. Phys. Lett. 69, 3725 (1996); W. Goetz, NGoogle Scholar
5. Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. B 50, 8067 (1994); Phys. Rev. Lett. 75, 4452 (1995); ibid., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
6. Walle, C. G. Van de, Phys Rev. B 56, R 10020 (1997).Google Scholar
7. Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
8. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
9. Bernardini, F., Fiorentini, V., and Bosin, A., Appl. Phys. Lett. 70, 2990 (1997).Google Scholar
10. Park, C. H. and Chadi, D. J., Phys. Rev. B 55, 12995 (1997).Google Scholar
11. Chadi, D. J., and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
12. Landau, L. D. and Lifshitz, E. M., Quantum Mechanics, (Pergamon, Oxford, 1997).Google Scholar