Skip to main content Accessibility help
×
Home

Deep Surface Trap States at ZnO Nanorods Arrays

  • Christa Bünzli (a1) (a2), David Parker (a1), Kieren Bradley (a1) (a3) and David J. Fermín (a1)

Abstract

Deep surface trap states present in hydrothermally grown ZnO nanorod (NR) arrays are monitored by photoelectrochemical and impedance spectroscopy. NR arrays were grown on a thin compact ZnO film deposited by pulsed laser deposition. Photocurrent responses upon square-wave illumination and lock-in detection of the as-grown NR arrays in the presence of Na2SO3 at pH 10 were characterized by a complex potential dependence indicating the presence of deep trap states. At a given frequency of light perturbation, the photocurrent amplitude increases as the potential bias is shifted towards values more positive than the flat band potential. Increasing the potential further than 0.8 V positive to the flat band potential leads to a decrease in the photocurrent amplitude. The potential of maximum photocurrent amplitude overlaps with a sharp decrease in the interfacial capacitance. The dependence of the photocurrent amplitude on bias potential strongly suggests the presence of deep electron trap states. The effect of the deep trap states are minimized by annealing of the NR arrays in air at 340° C.

Copyright

Corresponding author

References

Hide All
1. Dittrich, T., Belaidi, A. and Ennaoui, A., Sol. Energy Mater. Sol. Cells 95(6), 15271536 (2011).
2. Kamat, P. V., J. Phys. Chem. C 116(22), 1184911851 (2012).
3. Galoppini, E., Rochford, J., Chen, H., Saraf, G., Lu, Y., Hagfeldt, A. and Boschloo, G., J. Phys. Chem. B 110(33), 1615916161 (2006).
4. Martinson, A. B., McGarrah, J. E., Parpia, M. O. and Hupp, J. T., Phys. Chem. Chem. Phys. 8(40), 46554659 (2006).
5. Lehraki, N., Aida, M. S., Abed, S., Attaf, N., Attaf, A. and Poulain, M., Current Applied Physics 12(5), 12831287 (2012).
6. Peulon, S. and Lincot, D., Adv. Mater. 8(2), 166-& (1996).
7. O'Regan, B., Schwartz, D. T., Zakeeruddin, S. M. and Gratzel, M., Adv. Mater. 12(17), 1263-+ (2000).
8. Yoshida, T., Komatsu, D., Shimokawa, N. and Minoura, H., Thin Solid Films 451-452, 166169 (2004).
9. Govender, K., Boyle, D. S., Kenway, P. B. and O'Brien, P., J. Mater. Chem. 14(16), 25752591 (2004).
10. Kim, K. H., Utashiro, K., Abe, Y. and Kawamura, M., Int. J. Electrochem. Sci. 9(4), 20802089 (2014).
11. Wu, J. J. and Liu, S. C., Adv. Mater. 14(3), 215 (2002).
12. Huang, J., Yin, Z. and Zheng, Q., Energ. Environ. Sci. 4(10), 3861 (2011).
13. Vayssieres, L., Adv. Mater. 15(5), 464466 (2003).
14. Yi, G. C., Wang, C. R. and Park, W. I., Semicond. Sci. and Tech. 20(4), S22S34 (2005).
15. Mora-Seró, I. n., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R. n., Elias, J. and Lévy-Clément, C., App. Phys. Lett. 89(20), 203117 (2006).
16. Anta, J. A., Guillén, E. and Tena-Zaera, R., J. Phys. Chem. C 116(21), 1141311425 (2012).10.1021/jp3010025
17. Reddy, N. K., Devika, M. and Tu, C. W., Mater. Lett. 120, 6264 (2014).
18. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D., Nature Mater. 4(6), 455459 (2005).
19. Hagedorn, K., Forgacs, C., Collins, S. and Maldonado, S., J. Phys. Chem. C 114(27), 1201012017 (2010).
20. Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W. K., Zhong, Y. C., Wong, K. S., Chan, W. K., Tam, H. L., Cheah, K. W., Kwok, W. M. and Phillips, D. L., Nanotechnology 18(9), 095702 (2007).
21. McCluskey, M. D. and Jokela, S. J., J. Appl. Phys. 106(7), 071101 (2009).
22. Henley, S. J., Ashfold, M. N. R., Nicholls, D. P., Wheatley, P. and Cherns, D., Appl. Phys. a-Mater. Sci. Process. 79 (4-6), 11691173 (2004).
23. Schoenmakers, G. H., Vanmaekelbergh, D. and Kelly, J. J., J. Phys. Chem. 100(8), 32153220 (1996).
24. Schoenmakers, G. H., Vanmaekelbergh, D. and Kelly, J. J., J. Chem. Soc.-Faraday Trans. 93(6), 11271132 (1997).
25. Fermín, D. J., Ponomarev, E. A. and Peter, L. M., J. Electroanal. Chem. 473 (1–2), 192203 (1999).10.1016/S0022-0728(99)00109-6
26. Peter, L. M., Chem. Rev. 90(5), 753769 (1990).

Keywords

Deep Surface Trap States at ZnO Nanorods Arrays

  • Christa Bünzli (a1) (a2), David Parker (a1), Kieren Bradley (a1) (a3) and David J. Fermín (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed