Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-27T15:16:18.606Z Has data issue: false hasContentIssue false

Deep Structures Produced in III-V Materials by Combined Focused Ion Beam Irradiation and Dry Etching

Published online by Cambridge University Press:  21 February 2011

L.R. Harriott
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
Y.L. Wang
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
B.H. Chin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
H. Temkin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
Get access

Abstract

We have developed a direct patterning process for InP based materials which uses ion exposure followed by dry etching to produce surface topography. The substrate is first implanted with a 20 keV Ga+ beam focused to 0.2 micron diameter. The surface pattern is then developed in the substrate by etching with or without a low energy (25 -100 eV) flood Ar+ ion beam in a C12(5×10-4 Torr) atmosphere at 180 to 2000 C. This process has been integrated in a common vacuum chamber with a gas source molecular beam epitaxy (GSMBE) system. In-situ patterning and high quality overgrowth has been demonstrated for low Ar+ ion energies during etching. In this paper, we will describe a model for the patterning mechanism and suggest how it may be exploited to achieve a complete vacuum lithography process compatible with epitaxial regrowth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takamori, A., Miyauchi, E., Arimoto, H., Bamba, Y. and Hashimoto, H., Jpn. J. Appl. Phys. 23, L599 (1984).Google Scholar
2. Temkin, H., Harriott, L. R., Hamm, R. A., Weiner, J., and Panish, M. B., Appl. Phys. Lett, 54, 1463 (1989)Google Scholar
3. Harriott, L. R., Temkin, H., Hamm, R. A., Weiner, J. and Panish, M. B., J. Vac. Sci. Technol., November 1989, to be published Google Scholar
4. Temkin, H., Harriott, L. R., Weiner, J., Hamm, R. A., and Panish, M. B., MRS Proceeding, Spring 1989, to be published Google Scholar
5. Temkin, H., Harriott, L. R., and Panish, M. B., Appl. Phys. Lett, 52, 1478 (1988)Google Scholar
6. Harriott, L.R., Scotti, R.E., Cummings, K.D., and Ambrose, A.F., J. Vac. Sci. Technol. B5, 207,(1988).Google Scholar
7. Takado, N., Asakawa, K., Yuasa, T., Sugata, S., Miyauchi, E., Hashimoto, H., and Ishii, M., Appl. Phys. Lett. 50, 1891(1987).Google Scholar
8. Sugimoto, Y., Taneya, M., Hidaka, H., Akita, K., Sawaragi, H., Kasahara, H., and Aihara, R., Proc. SPIE, 1039(1989).Google Scholar
9. Guivarc'h, A., L'Haridon, H., Pelous, G., Hollinger, G. and Pertosa, P., J. Appl. Phys. 55, 1139(1984).Google Scholar
10. McNevin, S. C., J. Vac. Sci. Technol. B4,1216(1986).Google Scholar
11.The stopping and range of ions in solids”, Ziegler, J. F., Biersack, J. P., and Littmark, U., Pergamon Press, New York, 1985.Google Scholar
12. Wang, Y.L., Harriott, L.R., Hamm, R.A., and Temkin, H., Appl. Phys. Lett., to be published.Google Scholar
13. DeMeo, N. L., Donnelly, J. P., O'Connell, F. J., Geis, M. W. and O'Connor, K. J., Nucl. Instrum. Methods Phys. Res. B7, 814(1985).Google Scholar
14. Akita, K., Taneya, M., Sugimoto, Y., Hidaka, H., and Katayama, Y., J. Vac. Sci. Technol. B, November 1989, to be published.Google Scholar