Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:56:29.033Z Has data issue: false hasContentIssue false

Deep Levels Induced by High Fluence Proton Irradiation in Undoped GaAs Diodes

Published online by Cambridge University Press:  10 February 2011

A Castaldini
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Fisica, Viale Berti Pichat 6/2, Bologna, Italy
A Cavallini
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Fisica, Viale Berti Pichat 6/2, Bologna, Italy
L Polenta
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Fisica, Viale Berti Pichat 6/2, Bologna, Italy
C Canali
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Elettronica, Via Vivaldi 70, Modena, Italy
F Nava
Affiliation:
Dipartimento di Fisica, Via Campi 213B, Modena, Italy
R Ferrini
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Fisica, Via Bassi 6, Pavia, Italy
M Galli
Affiliation:
INFM, Viale Berti Pichat 6/2, Bologna, Italy Dipartimento di Fisica, Via Bassi 6, Pavia, Italy
Get access

Abstract

Semi-insulating liquid encapsulated Czochralski grown GaAs has been investigated after irradiation at high fluences of high-energy protons. Electron beam induced current observations of scanning electron microscopy evidenced a radiation stimulated ordering. An analysis has been carried out of the deep levels associated with defects as a function of the irradiation fluence, using complementary current transient spectroscopies. By increasing the irradiation fluence, the concentration of the native traps at 0.37 eV together with that of the EL2 defect significantly increases and, at the same time, two new electron traps at 0.15 eV and 0.18 eV arise and quickly increase in density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lai, S.T., Alexiev, D. and Nener, B.D., J. Appl. Phys. 78 p. 3686–90 (1995)Google Scholar
2. Tan, H.H., Williams, J.S. and Jagadish, C., J.Appl. Phys. 78 p. 1481–87 (1995)Google Scholar
3. Aliyu, Y.H., Morgan, D.V. and Bunce, R.W., Phys.Stat.Sol. (a) 135 p. 119131 (1993)Google Scholar
4. Pons, D. and Bourgoin, J.C., J. Phys. C: Solid State Phys. 18 p. 38393871 (1985)Google Scholar
5. Goodman, S.A., Auret, F.D. and Meyer, W.E., Nucl.Instr.&Meth.Phys.Res. B90 p.349353(1994)Google Scholar
6. Guillot, G. Revue Phys. Appl. 23 p. 833846 (1988)Google Scholar
7. Tenbusch, F., Arbabi, S., Braunschweig, W., Chu, Z., Krais, R., Kubicki, Th., Lübelsmeyer, K., Rente, C. Syben, O., Toporowsky, M. and Xiao, W.J., Int. Rep. of Physik. Inst. RWTH Aachen, Germany (1996)Google Scholar
8. Zakharenkov, L., Kozlovskii, V. and Pilkevich, Ya, Phys.Stat.Sol. (a) 111 p. K215–K218 (1989)Google Scholar
9. Alietti, M., Canali, C., Castaldini, A., Cavallini, A., Cetronio, A., Chiossi, C., D'Auria, S., Papa, C. del, Lanzieri, C., Nava, F. and Vanni, P., Nucl.Instr.Meth. in Phys.Res. A 362 p.344348(1995)Google Scholar
10. Heavens, O.S., Optical Properties of thin films, (Buttherworths, London, 1955).Google Scholar
11. Berman, L.S., Sov.Phys.Semicond. 9 p.406409 (1975)Google Scholar
12. Martin, G., Makram-Ebeid, S., Deep Centers in Semiconductors edited by Pantelides, S.T., (Gordon and Breach Science Publishers 1986).Google Scholar
13. Look, D.C., Electrical Characterization of GaAs Material and Devices, (John Wiley & Sons, Chichester, 1989).Google Scholar
14. McGregor, D.S., Rojeski, R.A., Knoll, G.F., Terry, F.L., East, J., Eisen, Y., J.Appl.Phys. 75 p. 79107915 (1994)Google Scholar
15. Mooney, P.J., Appl. Phys. 54 p. 208213 (1983)Google Scholar
16. Look, D.C., Fang, Z-Q, Hemsky, J.W. and Kengkan, P., Phys Rev. 55 p.22142218 (1997)Google Scholar
17. Borkovskaya, O.Y., Dmitruk, N.L., Litovchenko, V.G., Mishchuk, O.N., Sov.Phys.Semicond. 23 p. 129132 (1989)Google Scholar
18. Jorio, A., Parenteau, M., Aubin, M., Carlone, C., Khanna, S.M., Gerdes, J.W., IEEE Trans. Nucl.Sci. 41 p. 19371943 (1994)Google Scholar
19. Clark, S., Stirland, D.J., Brozel, M.R., Smith, M., Warwick, C.A. Semi-Insulating III-V Materials Conference Proceedings, Malmö, Sweden p. 31 (1988)Google Scholar
20. Martin, G.M., Estève, E., Langlade, P. and Makram-Ebeid, S. J.Appl.Phys. 56 p.26552657 (1984)Google Scholar
21. Brunkov, P.N., Kalinowsky, V.S., GNikitin, V. and Sobolev, M.M., Semicond.Sci. Technol. 7 p.12371240 (1992)Google Scholar
22. Krüger, J., Shih, Y.C., Xiao, L., Wang, C.L., Morse, J.D., Rogalla, M., Runge, K. and Weber, E.R., IEEE Semiconducting and Semi-Insulating Materials Conference SIMC'9, p.345–348 (1996)Google Scholar
23. Saarinen, K., Kuisma, S., Mäkinen, J., Hautojärvi, P., Törnqvist, M., Corbel, C. Phys.Rev. B 51 p.14152–163 (1995)Google Scholar
24. Martin, G.M., Mitonneau, A. and Mircea, A., Electron. Lett. 17 p.191195 (1977)Google Scholar
25. Lagowski, J., Lin, D.G., Chen, T.P., Skowronski, M. and Gatos, H.C., Appl.Phys.Lett. 47 p.929931(1985)Google Scholar