Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T12:40:26.193Z Has data issue: false hasContentIssue false

Deep Levels in Type-II Superlattices

Published online by Cambridge University Press:  22 February 2011

John D. Dow
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287–1504, U.S.A.
Jun Shen
Affiliation:
Motorola, Inc., Phoenix Corporate Research Laboratories, Tempe, Arizona 85284, U.S.A.
Shang Yuan Ren
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287–1504, U.S.A.
William E. Packard
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287–1504, U.S.A.
Get access

Abstract

Quantum confinement in superlattices affects shallow levels and band edges considerably (length scale of order 100 Å), but not deep levels (length scale of order 5 Å). Thus by band-gap engineering, one can move a band edge through a deep level, causing the defect responsible for the level to change its doping character. For example, the cation-on-anion-site defect in AlxGa1−xSb alloys is predicted to change from a shallow acceptor to a deep acceptor-like trap as the valence band edge passes through its T2 deep level with increasing At alloy content x. In a, Type-II superlattice, such as InAs/AlxGa1−xSb for x>0.2, where the conduction band minimum of the InAs should lie energetically below the antisite defect's T2 level in bulk AlxGa1−xSb, the electrons normally trapped in this deep level (when the defect is neutral) remotely dope the InAs n-type in the superlattice, leaving the defect positively charged. Thus a native defect that is thought of as an acceptor can actually be a donor and control the n-type doping of InAs quantum wells. The physics of such deep levels in superlattices and in quantum wells is summarized, and related to high-speed devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kohn, W., in Solid State Physics (edited by Seitz, F. and Turnbull, D., Academic Press, New York, 1957) Vol. 5, pp. 258321; J. M. Luttinger and W. Kohn, Phys. Rev. 97, 969 (1955).Google Scholar
[2] Wolford, D. J., Streetman, B. G., Hsu, W. Y., Dow, J. D., Nelson, R. J., and Holonyak, N. Jr., Phys. Rev. Letters 36, 1400 (1976); D. J. Wolford, B. G. Streetman, W. Y. Hsu, and J. D. Dow, Proc. 13th International Conference on Physics of Semiconductors, Rome, 1976, pp. 1049; W. Y. Hsu, J. D. Dow, D. J. Wolford, and B. G. Streetman, Phys. Rev. B 16,1597 (1977); D. J. Wolford, W. Y. Hsu, J. D. Dow, and B. G. Streetman, J. Lumin. 18/19, 863 (1979); C. A. Swarts, D. L. Miller, D. R. Franceschetti, H. P. Hjalmarson, P. Vogl, J. D. Dow, D. J. Wolford, and B. G. Streetman, Phys. Rev. B 21, 1708 (1980). Phys. Rev. Letters 44, 810 (1980).Google Scholar
[3] Lee, S. and Dow, J. D., Phys. Rev. B 36, 59685973 (1987).Google Scholar
[4] Newman, K. E. and Dow, J. D., Solid State Commun. 50, 587 (1984).Google Scholar
[5] Bunker, B. A., Hulbert, S. L., Stott, J. P., and Brown, F. C., Phys. Rev. Lett. 53, 2157 (1984).Google Scholar
[6] Lent, C. S., Bowen, M. A., Allgaier, R. S., Dow, J. D., Sankey, O. F., and Ho, E. S., Solid State Commun. 61, 83 (1987).Google Scholar
[7] Slater, J. C. and Koster, G. F., Phys. Rev., 94, 1498 (1954); G. F. Koster, Solid State Physics, Edited by F. Seitz and D. Turnbull, (Academic Press, New York, 1957) Vol. 5, p. 173.Google Scholar
[8] Hjalmarson, H. P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Letters 44, 810 (1980).Google Scholar
[9] Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
[10] We normally also omit charge-state splittings of deep levels in the interest of simplifying the calculations. With each additional electron occupying it, a deep level moves up in energy about 0.1 eV. See Kim, G., Dow, J. D., and Lee, S., Arabian J. Sci. Engineer. 14, 513 (1989); Phys. Rev. B 40, 7888 (1989).Google Scholar
[11] Harrison, W. A., Electronic Structure and the Properties of Solids, (Freeman, San Francisco, 1980).Google Scholar
[12] Ren, S. Y., Scientia Sinica A XXVII, p. 443 (1984); and S. Y. Ren, W. M. Hu, O. F. Sankey, and J. D. Dow, Phys. Rev. B 26, 951 (1982).Google Scholar
[13] Li, M.-F., Mao, D.-Q., and Ren, S. Y., Phys. Rev. B 32, 6907 (1985).Google Scholar
[14] Ludwig, G. W., Phys. Rev. A 137, 1520 (1965); J. R. Niklas and J. M. Spaeth, Solid State Communications 46, 121 (1983); J. M. Spaeth, D. M. Hofman, B. K. Meyer, Mater. Res. Soc. Symp. Proc. 46, 185 (1985), Microscopic Identification of Electronic Defects in Semiconductors, ed. by N. M. Johnson, S. G. Bishop, and G. D. Watkins.Google Scholar
[15] Tiwari, S. and Frank, D. J., Appl. Phys. Lett. 60, 630 (1992); G. J. Gualtieri, G. P. Schwartz, R. G. Nuzzo, R. J. Malik, and J. F. Walker, J. Appl. Phys. 61, 5337 (1987); G. J. Gualtieri, G. P. Schwartz, R. G. Nuzzo, and Q. A. Nuzzo, Appl. Phys. Lett. 49, 1037 (1986).Google Scholar
[16] Shen, J., Ren, S. Y., and Dow, J. D., Phys. Rev. Letters 69, 1089 (1992).Google Scholar
[17] Shen, J., Ren, S. Y., and Dow, J. D., Phys. Rev. B 46, 6938 (1992).Google Scholar
[18] Shen, J., Dow, J. D., Ren, S. Y., Tehrani, S., and Goronkin, H., J. Appl. Phys. 73, 8313 (1993).Google Scholar
[19] Dow, J. D., Shen, J., and Ren, S. Y.. Superlatt. Microstruct. 13, 405 (1993).Google Scholar
[20] Shen, J., Tehrani, S., Goronkin, H., Kramer, G., Adam, M., and Dow, J. D.. “Semi-insulating, p-type, and n-type doping in AlSb, GaSb, and AlSb/InAs by a single native defect”, Submitted.Google Scholar
[21] Ideshita, S., Furukawa, A., Mochizuki, Y., and Mizuta, M., Appl. Phys. Lett. 60, 2549 (1992).CrossRefGoogle Scholar
[22] Dow, J. D., “Localized perturbations in semiconductors”, In Highlights of Condensed-Matter Theory (Proceedings of the International School of Physics “Enrico Fermi”, Course 89, Varenna, 1983), ed. by Bassani, F., Fumi, F., and Tosi, M. P. (Societa Italiana di Fisica, Bologna, Italy, and North Holland, Amsterdam, 1985), pp. 465494; R.-D. Hong, D. W. Jenkins, S. Y. Ren, and J. D. Dow, Materials Research Soc. Symp. Proc. 77, 545-550 (1987), Interfaces, Superlattices, and Thin Films, ed. J. D. Dow and I. K. Schuller; J. D. Dow, S. Y. Ren, and J. Shen, NATO Advanced Science Institutes Series B 183: Properties of Im-purity States in Superlattice Semiconductors, (Plenum Press, New York, 1988), pp. 175-187, edited by C. Y. Fong, I. P. Batra, and S. Ciraci; S. Y. Ren and J. D. Dow, J. Appl. Phys. 65, 1987 (1989); S. Y. Ren and J. D. Dow, Phys. Rev. B 39, 7796 (1989); J. D. Dow, R.-D. Hong, S. Klemm, S. Y. Ren, M.-H. Tsai, 0. F. Sankey, and R. V. Kasowski, Phys. Rev. B 43, 4396 (1991); J. D. Dow, J. Shen, and S. Y. Ren, in “Progress in Electronic Properties of Solids”, Physics and Chemistry of Materials with Low-dimensional Structure, Festschrift in honor of Professor Franco Bassani, ed. by E. Doni, R. Girlanda, G. Pastori Parravicini, and A. Quattropani, (Kluwer, Dordrecht, 1989), pp. 439-449; J. Shen, J. D. Dow, and S. Y. Ren, J. Appl. Phys. 67, 3761 (1990); S. Y. Ren, J. Shen, R.-D. Hong, S. Klemm, M.-H. Tsai, and J. D. Dow, Surf. Sci. 228, 49 (1990); J. D. Dow, S. Y. Ren, J. Shen, R.-D. Hong, and R.-P. Wang, J. Electron. Mater. 19, 829 (1990); J. D. Dow, S. Y. Ren, J. Shen, and M.-H. Tsai. Deep levels in superlattices. In Impurities, Defects, and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Materials Research Society Symposia Proceedings No. 163, 349 (MRS, Pittsburgh, 1990), S. Y. Ren, J. D. Dow, and J. Shen, Phys. Rev. B 38, 10677 (1988), and references therein; and S. Y. Ren, "Electronic Structure of Deep Impurities in Semiconductors," in Lattice Dynamics and Semiconductor Physics, Festschrift for Professor Kun Huang, edited by J. B. Xia, Z. Z. Gan, R. Q. Han, G. G. Qin, G. Z. Yang, H. Z. Zheng, Z. T. Zhong, and B. F. Zhu (World Scientific, Singapore, 1990), pp. 536-547.Google Scholar
[23] A word of caution is in order about the results of Figs. 9 and 10. We have interpreted the theoretical results as though there were zero theoretical uncertainty. In fact modest uncertainties in the theory could lead to somewhat different level positions and hence different predictions. Nevertheless our goal is to illustrate the qualitative features of the theory.Google Scholar