Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T11:43:12.731Z Has data issue: false hasContentIssue false

The Debye Temperature for Hydrothermally Grown ThO2 Single Crystals

Published online by Cambridge University Press:  21 August 2013

Tony D. Kelly
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, U.S.A.
James C. Petrosky
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, U.S.A.
John W. McClory
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, U.S.A.
Timothy Zens
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, U.S.A.
David Turner
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433, U.S.A.
J. Matthew Mann
Affiliation:
Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, U.S.A.
Joseph W. Kolis
Affiliation:
Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973, U.S.A.
Juan A. Colón Santana
Affiliation:
Dept. of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, U.S.A.
Peter A. Dowben
Affiliation:
Dept. of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, U.S.A.
Get access

Abstract

The electronic properties of ThO2 single crystals were studied using x-ray photoemission spectroscopy (XPS). The XPS results show that the Th 4f core level is in an oxidation state that is consistent with that expected for Th in ThO2. The effective Debye temperature is estimated from the temperature dependent photoemission intensities of the Th 4f core level over the temperature range of 290 to 360 K. A Debye temperature of 468±32 K has been determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Numakura, M., Sato, N., Bessada, C., Okamoto, Y., Akatsuka, H., Nezu, A., Shimohara, Y., Tajima, K., Kawano, H., Nakahagi, T., and Matsuura, H., Prog. in Nuc. Energy 53, 994998 (2011).CrossRefGoogle Scholar
International Atomic Energy Agency, IAEA-TECDOC-1450, Vienna, Austria (2005).Google Scholar
LaGraffe, D., Dowben, P.A., and Onellion, M., J. Vac. Sci. Technol. A8, 27382742 (1990)CrossRefGoogle Scholar
Wu, N., Wisbey, D., Komesu, T., Yu, Z. X., Manno, M., Wang, L., Leighton, C., and Dowben, P. A., Physics Letters A 372, 24842489 (2008).CrossRefGoogle Scholar
McHale, S. R., McClory, J. W., Petrosky, J. C., Wu, J., Palai, R., Dowben, P. A., and Ketsman, I., Materials Letters 65, 14761478 (2011).CrossRefGoogle Scholar
Borca, C. N., Xu, B., Komesu, T., Jeong, H.-K., Liu, M. T., Liou, S. H., and Dowben, P. A., Surface Science 512, L346L352 (2002).CrossRefGoogle Scholar
Hüfner, S., Photoelectron Spectroscopy Principles and Applications, 3 rd ed. (Springer, New York, 2003) p. 391.CrossRefGoogle Scholar
Ali, M. and Nagels, P., Phys. Status Solidi B 21, 113116 (1967).CrossRefGoogle Scholar
Mann, M., Thompson, D., Serivalsatit, K., Tritt, T. M., Ballato, J., and Kolis, J., Crystal Growth and Design 10, 21462151 (2010).CrossRefGoogle Scholar
Fuggle, J. C., Burr, A. F., Watson, L. M., Fabian, D. J., Lang, W., J. Phys. F: Metals Physics 4, 335 (1974)CrossRefGoogle Scholar
Schneider, W.-D., Laubschat, C., Phys. Rev. B 23, 997 (1981)CrossRefGoogle Scholar
McLean, W., Colmenares, C. A., Smith, R.L., Somorjai, G. A., Phys. Rev. B 25, 8 (1982)CrossRefGoogle Scholar
Huang, C.-S., Houalla, M., Hercules, D. M., Kibby, C. L., Petrakis, L., J. Phys. Chem. 93, 4540 (1989)CrossRefGoogle Scholar
Krause, M., Haire, R. G., Keski-Rahkonen, O., Peterson, J. R., J. Electron Spectrosc. Relat. Phenom. 47, 215 (1988).CrossRefGoogle Scholar
Veal, B. W., Lam, D. J., Diamond, H., and Hoekstra, H. R., Phys. Rev. B 15, 2929 (1977).CrossRefGoogle Scholar
Allen, G. C., Hubert, S., and Simoni, E., J. Chem. Soc. Faraday Trans. 91, 2767 (1995).CrossRefGoogle Scholar
Ellis, W. P., Boring, A. M., Allen, J. W., Cox, L. E., Cowan, R. D., Pate, B. B., Arko, A. J., amd Lindau, I., Solid State Commun. 72, 725729 (1989)CrossRefGoogle Scholar
Ferrari, E., Galli, L., Miniussi, E., Morri, M., Panighel, M., Ricci, M., Lacovig, P., Lizzit, S., and Baraldi, A., Phys. Rev. B 82, 195420 (2010).CrossRefGoogle Scholar
Zhang, P., Wang, B., Zhao, X., Phys. Rev. B 82, 144110 (2010).CrossRefGoogle Scholar