Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T17:44:02.035Z Has data issue: false hasContentIssue false

DC/AC Performance Analysis of Indium Antimonide Nanowires

Published online by Cambridge University Press:  07 July 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Jiebin Zhong
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A. Material Science and Engineering Program, University of California-Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

We investigated the electrical properties and transmission line performance of indium antimonide nanowires. The results indicate that the of nanowires suffer from low mobility values on the order of 10-to-15 cm2V-1s-1 because of the contact resistances, scattering due to their small diameters, crystal defects and oxidation occurs during growth and cooling. nanowires show extremely inductive behavior during the AC measurements and due to these parasitic parameters, they can sustain transmission for the signals having frequencies up to 10 MHz. The bandwidth of the nanowires is directly proportional to the diameter of the nanowires. Improving the mobility to higher values and introducing de-embedding and impedance matching to the measurements and analysis could easily carry the bandwidth beyond GHz levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bondyopadhyay, P. K., Proceedings of the IEEE 86(1), 7881 (1998).Google Scholar
2. Zhou, Y., Sreekala, S., Ajayan, P. M. and Nayak, S. K., Journal of Physics-Condensed Matter 20(9), 095209 (2008).Google Scholar
3. Yang, Y. W., Li, L., Huang, X. H., Ye, M., Wu, Y. C. and Li, G. H., Applied Physics a-Materials Science & Processing 84(1-2), 79 (2006).Google Scholar
4. Rode, D. L., Physical Review B 3(10), 3287-& (1971).Google Scholar
5. Khan, M. I., Penchev, M., Jing, X. Y., Wang, X., Bozhilov, K. N., Ozkan, M. and Ozkan, C. S., Journal of Nanoelectronics and Optoelectronics 3(2), 199202 (2008).Google Scholar
6. Park, H. D., Prokes, S. M., Twigg, M. E., Ding, Y. and Wang, Z. L., Journal of Crystal Growth 304(2), 399401 (2007).Google Scholar
7. Gudiksen, M. S., Wang, J. F. and Lieiber, C. M., Journal of Physical Chemistry B 105(19), 40624064 (2001).Google Scholar
8. Hannon, J. B., Kodambaka, S., Ross, F. M. and Tromp, R. M., Nature 440 (7080), 69-71 (2006).Google Scholar
9. Wang, N., Cai, Y. and Zhang, R. Q., Materials Science & Engineering R-Reports 60(1-6), 151 (2008).Google Scholar
10. Howard, R. E., Hu, E. L. and Jackel, L. D., IEEE Transactions on Electron Devices 28(11), 13781381 (1981).Google Scholar
11. Caroff, P., Wagner, J. B., Dick, K. A., Nilsson, H. A., Jeppsson, M., Deppert, K., Samuelson, L., Wallenberg, L. R. and Wernersson, L. E., Small 4(7), 878882 (2008).Google Scholar
12. Thelander, C., Bjork, M. T., Larsson, M. W., Hansen, A. E., Wallenberg, L. R. and Samuelson, L., Solid State Communications 131(9-10), 573579 (2004).Google Scholar
13. Huang, Y., Duan, X. F., Cui, Y. and Lieber, C. M., Nano Letters 2(2), 101104 (2002).Google Scholar
14. Wunnicke, O., Applied Physics Letters 89(8), 083102 (2006).Google Scholar
15. Massoud, Y., Majors, S., Kawa, J., Bustami, T., MacMillen, D. and White, J., IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10(6), 789798 (2002).Google Scholar