Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T21:40:08.103Z Has data issue: false hasContentIssue false

Dc and Microwave Characteristics of High Transconductance AlGaN/GaN Heterostructure Field Effect Transistors on Sic Substrates

Published online by Cambridge University Press:  10 February 2011

Q. Chen
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449
J. W. Yang
Affiliation:
Current address: E&CE Department, University of South Carolina, Columbia, SC 29208
M. A. Khan
Affiliation:
Current address: E&CE Department, University of South Carolina, Columbia, SC 29208
A. T. Ping
Affiliation:
E&CE Department, University of Illinois, Urbana, IL 61801
I. Adesida
Affiliation:
E&CE Department, University of Illinois, Urbana, IL 61801
Get access

Abstract

High quality AJGaN/GaN heterostructures have been successfully deposited on both nand p-type SiC substrates. Heterostructure field effect transistors fabricated using these layers exhibited high channel current density (1.71 A/mm), well behaved pinch-off characteristics, and excellent extrinsic transconductance (Gm = 229 mS/mm). There is negligible channel current degradation up to a source to drain bias of 20 V as opposed to devices grown on sapphire substrates. The 0.25 μm gate-length devices fabricated on the heterostructures grown on p-type SiC has allowed us to extract a cutoff frequency of 53 GHz. The cutoff frequency showed little deterioration with increasing drain bias voltage. These results demonstrate for the first time the high frequency and high power operation potential of the heterostructure field effect transistors based on AlGaN grown on SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, Q., Gaska, R., Khan, M.A., Shur, M.S., Ping, A.T., Adesida, I., Burm, J., Schaff, W.J., and Eastman, L.F., Electron. Lett., 33(7), 637(1997) and the references therein.10.1049/el:19970403Google Scholar
2. Mohammad, S.N., Fan, Z-F., Salvador, A., Aktas, O., Botchkarev, A.E., Kim, W., and Morkoc, H., Appl. Phys. Lett. 69(10), 1420(1996).10.1063/1.117601Google Scholar
3. Wu, Y-F., Keller, B.P., Keller, S., Kapolnek, D., Kozodoy, P., DenBaars, S.P., and Mishra, U.K., Appl. Phys. Lett., 69(10), 1438(1996).Google Scholar
4. Wu, Y-F., Keller, B.P., Keller, S., Kapolnek, D., Kozodoy, P., DenBaars, S.P., and Mishira, U.K., Electron. Lett., 33, 1742(1997).10.1049/el:19971127Google Scholar
5. Chen, Q., Yang, J.W., Khan, M.A., Sullivan, G.J., Higgins, J.A., McDermott, B.T., accepted for publication in the IEEE Electron. Device Lett.Google Scholar
6. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., Burns, M., J. Appl. Phys. 76(3), 1363(1994).10.1063/1.358463Google Scholar
7. Binari, S.C., Redwing, J.M., Kelner, G., and Krupta, W., Electron. Lett. 33(3), 242(1997).Google Scholar
8. Lin, C.F., Cheng, H.C., Huang, J.A., Feng, M.S., Guo, J.D., and Chi, G.C., Appi. Phys. Lett., 70(19), 2583(1997).10.1063/1.118940Google Scholar