Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T17:57:36.008Z Has data issue: false hasContentIssue false

Dark Current Spectroscopy Of Metals In Silicon

Published online by Cambridge University Press:  15 February 2011

William C. Mccolgin
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650–2008
James P. Lavine
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650–2008
Charles V. Stancampiano
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650–2008
Get access

Abstract

Dark current spectroscopy (DCS) is used to identify the signature of metals that generate dark or leakage current in silicon image sensors. Individual metal atoms or defects are detected by DCS on a pixel-by-pixel basis. DCS is applied here to show how the number of electrically active iron atoms in a pixel changes with light and with low-temperature anneals. The measurements explore the dissociation and association of iron-boron pairs and the diffusion of iron near room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benton, J. L., Stolk, P. A., Eaglesham, D. J., Jacobson, D. C., Cheng, J.-Y., Poate, J. M., Ha, N. T., Haynes, T. E., and Myers, S. M., J. Appl. Phys. 80, 3275 (1996).Google Scholar
2. McColgin, W. C., Lavine, J. P., and Stancampiano, C. V., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N. M., and Sopori, B. L. (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995) pp. 713724.Google Scholar
3. McColgin, W. C., Lavine, J. P., Kyan, J., Nichols, D. N., and Stancampiano, C. V., Tech. Dig. IEDM, 113 (1992).Google Scholar
4. Kimerling, L. C. and Benton, J. L., Physica 116B, 297 (1983).Google Scholar
5. Okada, Y., Okigawa, M., Kazui, K., Kitamura, Y., Furusawa, T., Optoelectronics 6, 231 (1991).Google Scholar
6. McColgin, W. C., Lavine, J. P., Kyan, J., Nichols, D. N., Russell, J. B., and Stancampiano, C. V., in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Mater. Res. Soc. Proc. 262, Pittsburgh, PA, 1992) pp. 769774.Google Scholar
7. McGrath, R. D., Doty, J., Lupino, G., Ricker, G., and Vallerga, J., IEEE Trans. Electron Devices ED–34, 2555 (1987).Google Scholar
8. Zoth, G. and Bergholz, W., J. Appl. Phys. 67, 6764 (1990).Google Scholar
9. Weber, E. R., Appl. Phys. A 30, 1 (1983).Google Scholar
10. Koveshnikov, S. V. and Rozgonyi, G. A., Appl. Phys. Lett. 66, 860 (1995).Google Scholar