Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T07:03:38.490Z Has data issue: false hasContentIssue false

Dangling-Bond Relaxation and Metastability in P-Type Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

Richard S. Crandall
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Martin W. Carlen
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Klaus Lips
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

We discuss the subtle effects involved in observing slow dangling bond relaxation by studying capacitance transients in p-type hydrogenated amorphous silicon (a-Si:H). The data suggest that neutral dangling bonds are reversibly converted into metastable positive charged dangling bonds by hole trapping. These metastable positive dangling bonds reconvert to neutral dangling bonds upon annealing at elevated temperature. The annealing kinetics for this process are the same as those observed for annealing of quenched in conductivity changes in p-type a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wrolski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Crandall, R. S., Phys. Rev. B 24, 7457 (1981).Google Scholar
3. Lang, D. V., Cohen, J. D., and Harbison, J. P., Phys. Rev. Lett. 48, 421 (1982).Google Scholar
4. Crandall, R. S., Sadlon, K., Salamon, S. J., and Branz, H. M., in Proceedings of the Amorphous Silicon Materials and Solar Cells, edited by Stafford, B. L. (AIP, Denver, CO, 1991), p. 154.Google Scholar
5. Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).Google Scholar
6. Cohen, J. D., Leen, T. M., and Rasmussen, R. J., Phys Rev Lett 69, 3358 (1992).Google Scholar
7. Carien, M. W., Xu, Y., and Crandall, R. S., Phys. Rev. B 51, 2173 (1995).Google Scholar
8. Jackson, W. B. and Johnson, N. M., in Amorphous Silicon Technology-1995, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Materials Research Society, Pittsburgh, 1995), to be published.Google Scholar
9. Gardner, A. and Cohen, J. D., in Amorphous Silicon Technology-1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Materials Research Society, Pittsburgh, 1994), p. 207.Google Scholar
10. Zhong, F. and Cohen, J. D., in Amorphous Silicon Technology-1995, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Materials Research Society, Pittsburgh, 1995), to be published.Google Scholar
11. Adler, D., Solar Cells 9, 133 (1983).Google Scholar
12. Tsuo, Y. S., Xu, Y., Crandall, R. S., Ullal, H. S., and Emery, K., in Amorphous Silicon Technology-1989, edited by Madan, A., Thompson, M. J., Taylor, P. C., Hamakawa, Y., and LeComber, P. G. (Materials Research Society, Pittsburgh, 1989), p. 471.Google Scholar
13. Crandall, R. S. and Carlen, M. W., J. Non-Cryst. Solids, to be published.Google Scholar
14. Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
15. Street, R. A., Hack, M., and Jackson, W. B., Phys. Rev. B 37, 4209 (1988).Google Scholar
16. Branz, H. M. and Fedders, P., in Amorphous Silicon Technology-1994, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M., and Matsuda, A. (Materials Research Society, Pittsburgh, 1994), p. 129.Google Scholar
17. Fedders, P. and Branz, H., J. Non-Cryst. Solids, to be published.Google Scholar