Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:59:28.659Z Has data issue: false hasContentIssue false

CVD of SiC and AlN Using Cyclic Organometallic Precursors

Published online by Cambridge University Press:  15 February 2011

L. V. Interrante
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
D. J. Larkin
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
C. Amato
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
Get access

Abstract

The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on SiC and AlN deposition, with particular focus on SiC. Molecules containing (SiC)2 and (AlN)3 rings as the “core structure” were employed as the source materials for these studies. The organoaluminum amide, [Me2AlNH2]3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes, [Si(XX′)CH2]2 (with X and X′ - H, CH3 , and CH2 SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, [SiH2 CH2]2, was found to exhibit the lowest deposition temperature (ca. 670 °C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates (70% with a SiC<lll> orientation).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stinton, D.P., Caputo, A.J., and Lowden, R.A., Ceram. Bull. 65(2) 347 (1986); S.M. Gupte, and J.A. Tsamopoulos, J. Electrochem. Soc. 136, 555 (1989); A.J. Caputo, R.A. Lowden, and D.P. Stinton, Oak Ridge Natl. Lab. Report No. ORNL/TM-9651, June 1985.Google Scholar
2. Chin, J., Gantzel, P.K., and Hudson, R.G., Thin Solid Films, 40, 57 (1977); P. Tsui and K.E. Spear, in “Emergent Process Methods for High-Technology Ceramics”, R.F. Davis, H. Palmour III, and R.L. Porter, eds., Materials Science Research, Vol. 17, Plenum Press (1984), p. 371CrossRefGoogle Scholar
3. Interrante, L.V., Czekaj, C., and Lee, W., NATO ASI Proceedings, “Mechanisms of Reactions of Organometallic Compounds with Surfaces”,Cole-Hamilton, D.J. and Williams, J.O., eds., Plenum Publ. Corp. (1989) p. 205; L.V. Interrante, G.A. Sigel, C. Hejna and M. Garbauskas, Phosphorus, Sulfur and Silicon 41, 325 (1989); L.V. Interrante, B. Han, J.B. Hudson and C. Whitmarsh, Applied Surface Science, 46, 5 (1990)Google Scholar
4. Interrante, L.V., Sigel, G.A., Hejna, C. and Garbauskas, M., Inorg. Chem. 28, 252 (1989).Google Scholar
5. Boyd, D.C., Haasch, R.T., Mantell, D.R., Schulze, R.K., Evans, J.F., and Gladfelter, W.L., Chem. Mater. 1, 119 (1989).CrossRefGoogle Scholar
6. Interrante, L.V., Carpenter, L.E., Whitmarsh, C., Lee, W., Slack, G.A., and Carbauskas, M., Mats. Res. Soc. Symp. Proc. 73, 359 (1986).Google Scholar
7. Interrante, L.V., Lee, W., McConnell, M., Lewis, N., and Hall, E., J. Electrochem. Soc. 136, 472 (1989).Google Scholar
8. Sauls, F.C., Czekaj, C.L., and Interrante, L.V., Inorg. Chem. 29, 4688 (1990).Google Scholar
9. Lynam, M.M., Interrante, L.V., Patterson, C.H., and Messmer, R.P., Inorg. Chem., 30, 1918 (1991).Google Scholar
10. Amato, C., Hudson, J. and Interrante, L.V., Mats. Res. Soc. Sympos. Proc. 168, 119 (1990); C. Amato, J. Hudson and L.V. Interrante, Mats. Res. Soc. Sympos. Proc. 204, 135 (1991).Google Scholar
11. (a) O'Neal, H. E.; Ring, M. A. J. Organometal. Chem. 213, 419 (1981); (b) N. Auner, I.M.T. Davidson, S. Ijadi-Mahhsoodi, F.T. Lawrence, Organomet. 5, 431 (1986).Google Scholar
12. (a) Lee, W., Interrante, L.V., Czekaj, C., Hudson, J., Lenz, K., and Sun, B-X., Mats. Res. Soc. Sympos. Proc. 131, 431 (1989); (b)D.J. Larkin, L.V. Interrante, J.B. Hudson and B. Han, Mats. Res. Soc. Sympos. Proc. 204, 141 (1991).Google Scholar
13. Kriner, W.A., J. Org. Chem. 29, 1601 (1964).CrossRefGoogle Scholar
14. Irwin, R.M., Cooke, J.M., and Laane, J., J. Amer. Chem. Soc. 99 3273 (1977); N. Auner and J. Grobe, J. Organomet. Chem. 222, 33 (1981); N.S. Nametkin, V.M. Vdovin, V.I. Zav'yalov, and P.L. Grinberg, Izv. Akad. Nauk SSSR, Ser. Khim., 5, 929 (1965).Google Scholar
15. Blocher, J.M. Jr., in “Deposition Technologies for Films and Coatings”, Noyes Publ., Park Ridge, NJ (1982), p. 335; M.H.J.M. de Croon and L.J. Giling, J. Electrochem. Soc. 137, 2867 (1990).Google Scholar
16. Takai, T., Halicioglu, T., and Tiller, W.A., Surf. Sci. 164, 341 (1985).Google Scholar
17. Barton, T.J., Marquardt, G., and Kilgour, J.A., J. Organometal. Chem., 85, 317 (1975).Google Scholar