Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T02:44:56.914Z Has data issue: false hasContentIssue false

CVD and Characterization of Al-Cu Metallization Thin Films

Published online by Cambridge University Press:  25 February 2011

V. H. Houlding
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
H. Maxwell Jr
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
S. M. Crochiere
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
D. L. Farrington
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
R. S. Rai
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
J. M. Tartaglia
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Pkwy., Broomfield, CO 80021
Get access

Abstract

The chemical vapor deposition of Al-Cu thin films on Si, SiO2, and TiN substrates was examined in a vertical low pressure cold wall reactor using trimethylamine alane (TMAA1) at 20 C as the Al source. The Cu sources bis-(hexafluoroacetylacetonato)copper(H)(CuHFA), (cyclopentadienyl)copper(I) triethylphosphine (CpCuPEt3), and (hexafluoroacetylacetonato)copper(I) trimethylphosphine (HfaCuPMe3), were compared. The Cu content of the films was controlled up to“5 wt% by simply varying the temperature of the Cu source. Codeposited Al-Cu films with excellent conductivity, purity, and adhesion properties were obtained with all Cu sources. Optimal film smoothness was achieved at∼350 C. The compounds differed in the ease of control over the %Cu in the films. CuHFA exhibited a massive parasitic reaction which made control very difficult. The Cu(I) complexes showed very minor parasitic reactions. Analysis of films with high Cu content by SEM-EDS showed clear segregation of Cu and Al, consistent with the low solubility of Cu in Al. Films with >2% Cu appeared homogeneous on a μm scale by both SEM-EDS and SIMS depth profiling. TEM of film cross sections revealed a polycrystalline Al film with small (20–100 Å) Cu-rich particles dispersed throughout the Al grains. These particles exhibited bright field-dark field contrast characteristic of crystalline material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Houlding, V. H. and Coons, D. E., in Tunpsten and Other Advanced Metals for ULSI Applications 1990, edited by Smith, G. C. and Blumenthal, R. (Mater. Res. Soc, Pittsburgh, 1990), pp. 203208.Google Scholar
2) a. VanHemert, R. L., Spendlove, L. B., and Sievers, R. E., J. ElectroChem. Soc, 112, 1123 (1965).Google Scholar
b. Temple, R. and Reisman, A., J. ElectroChem. Soc, 136, 3525 (1989).Google Scholar
c. Kaloyeros, A. E., Feng, A., Garhart, J., Brooks, K. C., Ghosh, S. K., Saxena, A. N., and Luehrs, F., J. Elect. Mater, 19, 271 (1990).CrossRefGoogle Scholar
3) a. Dupuy, C. G., Beach, D. B., Hurst, J. E. Jr, and Jasinski, J. M., Chem. Mater, 1, 16 (1989).Google Scholar
b. Beach, D. B., LeGoues, F. K., and Hu, C. -K., Chem. Mater, 2, 216219 (1990).Google Scholar
Hampden-Smith, C. M. J., Kodas, T. T., Paffett, M., Farr, J. D., and Shin, H. -K., Chem. Mater, 2, 636 (1990).CrossRefGoogle Scholar
4) a. Shin, H. -K., Chi, K. -M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M., Mat. Res. Soc. Symp. Proc, 204, 421 (1991).Google Scholar
b. Shin, H. -K., Chi, K. -M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M., Adv. Mater, 3, 246 (1991).Google Scholar
5) Ruff, J. K., Inorg. Synth, 9, 30 (1967).CrossRefGoogle Scholar
6) Cotton, F. A. and Marks, T. J., J. Am. Chem. Soc, 92, 51145117 (1970).Google Scholar
7) Fraser, G. W., Greenwood, N. N., and Straughan, B. P., J. Chem. Soc, 1963, 37423746 (1963).Google Scholar
8) Metals Handbook. 8th ed., vol. 8, (American Society for Metals, Mearls Park, OH, 1973), p 259.Google Scholar
9) a. Mader, S. and Herd, S., Thin Solid Films 10, 377 (1972).CrossRefGoogle Scholar
b. Walker, G. A. and Goldsmith, C. C., J. Appl. Phys, 44, 2452 (1973).CrossRefGoogle Scholar
Agarwala, C. B. N., Berenbaum, L., and Peressini, P., J. Electronic Mater, 3, 137(1974).CrossRefGoogle Scholar
10) Ogawa, S. and Nishimura, H., Proc. Intl. Electron. Devices Mtg.-91, December, 1991, (IEEE, 1991), pp. 277280.Google Scholar
11) d'Heurle, F. M. and Ho, P. S., in Thin Films - Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W., (Wiley Interscience, New York NY 1978), pp. 243304.Google Scholar