Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T10:58:32.417Z Has data issue: false hasContentIssue false

Current-voltage characteristics in organic semiconductor crystals: space charge vs. contact-limited carrier transport

Published online by Cambridge University Press:  01 February 2011

J. Reynaert
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium also with ESAT, Katholieke Universiteit Leuven, Leuven, Belgium
V. I. Arkhipov
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
J. Genoe
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
G. Borghs
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
P. Heremans
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

Numerous experimental studies, mostly based on the time-of flight (TOF) technique, showed that the conductivity in organic crystals can be analysed in terms of (trap-controlled) band transport. However, recent comparative studies of TOF signals and space charge limited currents (SCLCs) in tetracene crystals revealed a striking difference in carrier mobilities estimated from TOF current transients and from SCLC curves. The analysis of the SCLC curves yielded the mobilities wildly varying within 6 orders of magnitude. Therefore, it is not always clear whether the measured current-voltage (IV) device characteristics are controlled by charge injection or by transport in the bulk. In this work, we formulate a model of dopant-assisted carrier injection across a metal/organics interface and use this model for the analysis of IV curves measured on a tetracene and perylene crystal. The model suggests the occurrence of an energetically disordered layer at the surface of an organic crystal. This might be either an amorphous phase of the same material or a crystalline layer with a high density of defects and/or impurities. Since, at variance with bulk properties, the surface of an organic crystal is poorly controlled and can be strongly modified upon the contact deposition, the model of injection-controlled IV characteristics can explain the striking difference between the TOF mobility and the apparent ‘SCLC mobility’ measured in tetracene crystals. In order to give more credence to the role of surface defects states in the dark charge transport, we compare IV characteristics measured on sandwich and coplanar structures. In the latter structure, surface states show a major contribution to the conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers. 2nd ed. 1999, New York: Oxford University Press.Google Scholar
2. Karl, N., Synthetic Metals, 2003. 133: p. 649657.Google Scholar
3. Podzorov, V., Pudalov, V.M., and Gershenson, M.E., Applied Physics Letters, 2003. 82(11): p. 17391741.Google Scholar
4. Goldmann, C., Haas, S., Krellner, C., Pernstich, K.P., Gundlach, D.J., and Batlogg, B., Journal of Applied Physics, 2004. 96(4): p. 20802086.Google Scholar
5. de Boer, R.W.I., Jochemsen, M., Klapwijk, T.M., and Morpurgo, A.F., J. Appl. Phys., 2004. 95(3): p. 1196.Google Scholar
6. Lampert, M.A. and Mark, P., Current injection in Solids. 1970, New York: Academic.Google Scholar
7. Reynaert, J., Arkhipov, V.I., Borghs, G., and Heremans, P., Applied Physics Letters, 2004. 85(4): p. 603605.Google Scholar
8. Karl, N., Molecular Crystals and Liquid Crystals, 1989. 171: p. 157-&.Google Scholar
9. Laudise, R.A., Kloc, C., Simpkins, P.G., and Siegrist, T., Journal of Crystal Growth, 1998. 187(3–4): p. 449.Google Scholar
10. Arkhipov, V.I., Emelianova, E.V., Tak, Y.H., and Bassler, H., Journal of Applied Physics, 1998. 84(2): p. 848.Google Scholar
11. Hiramoto, M., Tomioka, A., Suemori, K., and Yokoyama, M., Applied Physics Letters, 2004. 85(10): p. 18521854.Google Scholar