Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-08T13:02:49.795Z Has data issue: false hasContentIssue false

CuPt-B Ordered Microstructures in GaInP and GaInAs Films

Published online by Cambridge University Press:  10 February 2011

S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
K. M. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
R. J. Matson
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Y. Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
D. J. Friedman
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
M. C. Hanna
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

We examine CuPt-B atomic sublattice ordering in Ga0.51In0.49P (GaInP) and Ga0.47In0.53As (GaInAs) III-V alloy films grown by atmospheric- and low-pressure metalorganic chemical vapor deposition on singular and vicinal (001) substrates. The influences of growth conditions and substrate miscut on double- and single-variant ordered microstructures are investigated using transmission electron microscopy (TEM). Relatively thick (>1–2 litm) double-variant ordered GalnP and GaInAs films show complementary superdomain formation. Single-variant ordered films on <111>B-miscut substrates contain single-phase domains, separated by antiphase boundaries (APBs). The appearance of APBs in TEM dark-field images is anticipated from electron diffraction theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gomyo, A., Suzuki, T., Kobayashi, K.. Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Letters 50 (1987) 673.Google Scholar
2.Arent, D. J., Bertness, K. A., Bode, M., Kurtz, Sarah R., and Olson, J. M., Appl. Phys. Letters 62 (1993) 1806.Google Scholar
3.Alsina, F., Garriga, M., Alonso, M. I., Pascual, J., Camassel, J., and Glew, R. W. in 22ndInternational Conference on the Physics of Semiconductors, Ed. Lockwood, D. J., (World Scientific, Vancouver, Canada, 1994), pp. 253256.Google Scholar
4.Ueda, O. in Optoelectronic Materials: Ordering, Composition Modulation, and Self-Assembled Structures, Ed. Jones, E. D., Mascarenhas, A., Petroff, P., (Materials Research Society, Pittsburgh, Vol.417, 1996), pp. 3142.Google Scholar
5.Ahrenkiel, S. P., Johnston, S. W., Ahrenkiel, R. K., Arent, D. J., Hanna, M. C., and Wanlass, M. W., Appl. Phys. Letters 74 (1999) 3534.Google Scholar
6.Froyen, S. and Zunger, A., Phys. Rev. Letters 66 (1991) 2132.Google Scholar
7.Suzuki, T. and Gomyo, A., J. Cryst. Growth 111 (1991) 353.Google Scholar
8.Suzuki, T., Ichihashi, T., and Nakayama, T., Appl. Phys. Letters 73 (1998) 2588.Google Scholar
9.Kim, S.-J., Asahi, H., Takemoto, M., Asami, K., Takeuchi, M., and Gonda, S.-I.., Jpn. J. Appl. Phys. 33 (1996) 4225.Google Scholar
10.Baxter, C. S., Stobbs, W. M., and Wilkie, J. H., J. Crystal Growth, 112 (1991) 373.Google Scholar
11.Friedman, D. J., Zhu, J. G., Kibbler, A. E., Olson, J. M., and Moreland, J., Appl. Phys. Letters 63 (1993) 1774.Google Scholar
12.Seong, T. Y., Norman, A. G., Booker, G. R., and Cullis, A. G., J. Appl. Phys. 75 (1994) 12.Google Scholar
13.Takeda, S., Kuno, Y., Hosoi, N., and Shimoyama, K., J. Crystal Growth 205 (1999) 11.Google Scholar
14.Lee, S. H. and Stringfellow, G. B., J. Appl. Phys. 83 (1998) 3620.Google Scholar