Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T09:30:42.545Z Has data issue: false hasContentIssue false

CuGaSe2-Based Solar Cells with High Open Circuit Voltage

Published online by Cambridge University Press:  01 February 2011

Raquel Caballero
Affiliation:
raquel.caballero@hmi.de, Hahn-Meitner-Institut, Technology, Glienicker Strasse 100, Berlin, N/A, Germany, 0049 3080623241, 0049 3080623173
Susanne Siebentritt
Affiliation:
siebentritt@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Heterogeneous Material Systems, Glienicker Strasse 100, Berlin, 14109, Germany
Christian A. Kaufmann
Affiliation:
kaufmann@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Technology, Glienicker Strasse 100, Berlin, 14109, Germany
Carola Kelch
Affiliation:
kelch@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Heterogeneous Material Systems, Glienicker Strasse 100, Berlin, 14109, Germany
Daniel Schweigert
Affiliation:
daniel.schweigert@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Technology, Glienicker Strasse 100, Berlin, 14109, Germany
Thomas Unold
Affiliation:
unold@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Technology, Glienicker Strasse 100, Berlin, 14109, Germany
Marin Rusu
Affiliation:
rusu@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Heterogeneous Material Systems, Glienicker Strasse 100, Berlin, 14109, Germany
Hans-Werner Schock
Affiliation:
hans-werner.schock@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Technology, Glienicker Strasse 100, Berlin, 14109, Germany
Martha Ch Lux-Steiner
Affiliation:
lux-steiner@hmi.de, Hahn-Meitner-Institut Berlin GmbH, Heterogeneous Material Systems, Glienicker Strasse 100, Berlin, 14109, Germany
Get access

Abstract

The objective of this work is to increase the open circuit voltage of CuGaSe2(CGS)-based solar cells without decreasing their efficiency. For that, the interface between the p-type CGS absorber and the n-type CdS/ZnO window layer is compared using three different recipes for the growth of the buffer layer. Results show the importance of the adaptation of the CdS buffer layer to the CuGaSe2 absorber film. A maximum open circuit voltage of 922 mV is achieved for the devices when using 60ºC as the chemical bath temperature and a low thiourea concentration. Drive-level capacitance profiling, external quantum efficiency and temperature dependent current-voltage measurements reveal a better quality of the CdS/CuGaSe2 interface for this buffer layer deposition conditions. Factors such as the larger depletion region width and the lower doping level, reducing the tunnelling component, are pointed out as responsible of the higher Voc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishiwaki, S., Siebentritt, S., Walk, P. and Lux-Steiner, M.Ch., Prog. Photovolt: Res. Appl. 11,243 (2003).Google Scholar
2. Young, D.L., Keane, J., Duda, A., AbuShama, J.A.M., Perkins, C.L., Romero, M. and Noufi, R., Prog. Photovolt: Res. Appl. 11,535 (2003).Google Scholar
3. Saad, M., Riazi, H., Bucger, E. and Lux-Steiner, M.Ch., Appl. Phys. A 62, 181 (1996).Google Scholar
4. Klenk, R., Thin Solid Films 387,135 (2001).Google Scholar
5. Contreras, M. A., Wiesner, H., Tuttle, J., Ramanathan, K. and Noufi, R., Solar Energy Mater. Solar Cells 49, 239 (1997).Google Scholar
6. Caballero, R., Siebentritt, S., Sakurai, K., Kaufmann, C.A. and Lux-Steiner, M. Ch., IEEE 4th World Conf. on Photovolt. Energy Conversion Proc., Waikoloa, Hawaii, USA, 2006.Google Scholar
7. Kaufmann, C.A., Neisser, A., Klenk, R. and Scheer, R., Thin Solid Films 480-481,515 (2005).Google Scholar
8. Kohara, N., Negami, T., Nishitani, M. and Wada, T., Jpn. J. Appl. Phys. 34, L1141 (1995).Google Scholar
9. Nadenau, V., Hariskos, D., Schock, H.W., Krejci, M., Haug, F.J., Tiwari, A.N., Zogg, H. and Kostorz, G., J. Appl. Phys. 85, No. 1, 534 (1999).Google Scholar
10. Rusu, M., Rumberg, A., Schuler, S., Nishiwaki, S., Würz, R., Babu, S.M., Dziedzina, M., Kelch, C., Siebentritt, S., Klenk, R., Schedel-Niedrig, Th. and Lux-Steiner, M.Ch., J. Physics and Chemistry of Solids 64,1849 (2003).Google Scholar
11. Schuler, S., Nishiwaki, S., Dziedzina, M., Klenk, R., Siebentritt, S. and Lux-Steiner, M.Ch. in II-VI Compound Semiconductor Photovoltaic Materials edited by Birkmire, R., Noufi, R., Lincot, D. and Schock, H.W., (Mat. Res. Soc. Symp. Proc. 668, San Francisco, 2001) H5.14.1.Google Scholar
12. Caballero, R., Siebentritt, S., Sakurai, K., Kaufmann, C.A., Schock, H.W. and Lux-Steiner, M.Ch., Thin Solid Films 515, 5862 (2007).Google Scholar
13. Ortega-Borges, R. and Lincot, D., J. Electrochemical Soc. 140 (12), 3466 (1993).Google Scholar
14. Nadenau, V., Rau, U., Jasenek, A. and Schock, H.W., J. Appl. Phys. 87, No. 1, 584 (2000).Google Scholar