Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T18:31:18.264Z Has data issue: false hasContentIssue false

Cubic SiC the Forgotten Polytype

Published online by Cambridge University Press:  10 February 2011

H. N. Jayatirtha
Affiliation:
Materials Science Research Center of Excellence School of Engineering, Howard University, 2300 6th St. NW. Washington DC, 20059
M. G. Spencer
Affiliation:
Materials Science Research Center of Excellence School of Engineering, Howard University, 2300 6th St. NW. Washington DC, 20059
Get access

Abstract

The two most common and most studied forms of SiC are 6H-SiC and 3C-SiC. The 3C-SiC, or cubic modification shares the zincblend lattice structure with other well developed semiconductor materials, such as GaAs and InP. We have grown thick 3C-SiC by the sublimation method. Our results show that it is possible to maintain the 3C polytype even at growth temperatures of 2000°C. Using the sublimation technique we have obtained growth rates as high as 130 microns/hr.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Verma, A. and Krishna, P., Polymorphism and Polytypism in Crystals, (Wiley, New York, 1966).Google Scholar
2. Progress in Crystal Growth and Characterization, vol.7, (Pergamon, Oxford, 1983), Krishna, P., Ed.Google Scholar
3. Pirouz, P. and Yang, J. W., Ultramicroscopy, 51 (1993) 189.Google Scholar
4. Powell, J. A. and Will, H. A., J. Appl. Phys. 43, (1972 1400.Google Scholar
5. Yoo, Woo Sik and Matsunami, Hirojuki, J. Appl. Phys. 70 (11), 1 Dec. 1991.Google Scholar
6. Tairov, Yu. M., Tsvetkov, V. F., Chernov, M. A., and Taranets, V. A., Phys. Stat. Sol. (a) 43, 1977 363.Google Scholar
7. Powell, J. A. and Will, H. A., J. Appl. Phys. 43, p. 1400 (1972).Google Scholar
8. Yang, J. W., and Pirouz, P., Journal of Materials Research (1995).Google Scholar
9. Kal′nin, A. A., Petzoldt, J., and Tairov, Yu. M., Sov. Phys. Solid State 29, (February 1987), p.328.Google Scholar
10. Moskvina, D. R., Petzold, J., Potapov, E. N., and Tairov, Yu. M., Soy. Phys. Semicond. 23, (Dec 1989) 1388.Google Scholar
11. Cheng, C., Heine, Volker and Jones, I. L., J. Phys. Conds. Matter, 2 (1990) 5097.Google Scholar
12. Cheng, C., Needs, R. J., and Heine, Volker, J. Phys. C. Solid State Phys. 21, (1988) 1049.Google Scholar
13. Tairov, Y. M. and Tsvetkove, V. F., Progress in Crystal Growth and Characterization, vol.7, Krishna, P. Ed., Pergamon, Oxford, (1983).Google Scholar
14. Heine, V., Cheng, C., and Needs, R. J., Material Science and Engineering B11, (1992), p. 55.Google Scholar
15. Kimoto, Tsunenobu, Nishino, Hironori, Yoo, Woo Sik and Matsunami, Hiroyuki, J. Appl. Phys., vol.73, (Jan 1993).Google Scholar
16. Tairov, Yu. M., Safaraliev, G. K., Tsvetkov, V. F., and Chernov, M. A., Piema, vol. JTPH 2, 699 (1976).Google Scholar
17. Tairov, Yu M. and Tsvetkov, V. F., J. Crystal Growth 43, 209, (1978).Google Scholar
18. Tairov, Yu M. and Tsvetkov, V. F., J. Crystal Growth 52, 146, (1981).Google Scholar
19. Drowart, , Maria, G. De, Inghram, M. G., J. Chem. Phys. 41, 5 (1978), p. 1015.Google Scholar
20. Behrens, R. G., Rinehard, G. H., NBS Special Publication, No. 561, (1979).Google Scholar
21. Furukawa, Katsuki, Tajima, Yoshimitsu, Saito, Hajime, Fuji, Yoshihisa, Suzuki, Akira and Nakajima, Shiegeo, Jpn. J. Appl. Phys. 32 (1993), p. 2.Google Scholar
22. Shields, V., Fekade, K., and Spencer, M. G., Appl. Phys. Lett., 62 (16), 1919 (1993).Google Scholar