Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T21:01:29.495Z Has data issue: false hasContentIssue false

Cubic GaN Heteroepitaxy on Thin-SiC-Covered Si(001)

Published online by Cambridge University Press:  15 February 2011

Yuichi Hiroyama
Affiliation:
Joint Research Center for Atom Technology-Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba. Ibaraki 305-0046, Japan
Masao Tamura
Affiliation:
Joint Research Center for Atom Technology-Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba. Ibaraki 305-0046, Japan
Get access

Extract

We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbonization using C2H2, gas, the SiC layers with the thickness between 2.5 and 4 nm result in the epitaxial growth of β-GaN on thus SiC-formed Si substrates. At the highest GaN growth rate of 110 nm/h (a Ga-cell temperature of 950 °C), β-GaN layers grown at a substrate temperature of 700 °C show a nearly flat surface morphology and the fraction of included hexagonal GaN becomes negligible when compared to the results of β-GaN layers grown under other conditions of Ga-cell and substrate temperatures. Thus obtained β-GaN films have good performance in photoluminescence intensity although the FWHM of band-edge recombination peak is still wider (137 meV) than the reported values for the β-GaN on 3C-SiC and GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mizuta, M., Fujieda, S., Matsumoto, Y., Kawamura, T., Jpn. J. Appl. Phys. 25, L945 (1986).Google Scholar
[2] Paisley, M.J., Sitar, Z., Posthill, J.B., Davis, RF., J. Vac. Sci. Technol. A7, 701 (1989).Google Scholar
[3] Okumura, H., Misawa, S., Yoshida, S., Appl. Phys. Lett. 59, 1058 (1991).Google Scholar
[4] For example, Moustakas, T.D., Lei, T., Molnar, R.J., Physica B185, 36 (1993).Google Scholar
[5] Hiroyama, Y. and Tamura, M., Jpn. J. Appl. Phys. 37, L630 (1998).Google Scholar
[6] Pirouz, P., Ernst, F., Cheng, T.T., Mater. Res. Soc. Proc. 116, 57 (1988).Google Scholar
[7] Nishino, S., Powell, J.A., Will, H.A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
[8] Nagasawa, H. and Yamaguchi, Y., J. Cryst. Growth 115, 612 (1991).Google Scholar
[9] Steckl, A.J. and Li, J.P., Thin Solid Films 216, 149 (1992).Google Scholar
[10] Okumura, H., Ohta, K., Feuillet, G., Balakurishnan, K., Chichibu, S., Hamaguchi, H., Hacke, P., Yoshida, S., J. Cryst. Growth 178, 113 (1997).Google Scholar
[11] As, D.J., Schmilgus, F., Wang, C., B. Sch6ttker, Schikora, D., Lischka, K., Appl. Phys. Lett. 70, 1311 (1997).Google Scholar
[12] Kuzunia, J.N., Yang, J.W., Chen, Q.C., Krishnankutty, S., Khan, M. Ashif, Appl. Phys. Lett. 65, 2407 (1994).Google Scholar
[13] Okumura, H., Yoshida, S., Okahisa, T., Appl. Phys. Lett. 64, 997 (1994).Google Scholar