Skip to main content Accessibility help
×
Home

Cu Migration and its Impact on the Metastable Behavior of CdTe Solar Cells

  • Da Guo (a1), Richard Akis (a1), Daniel Brinkman (a2), Andrew Moore (a3), Tian Fang (a4), Igor Sankin (a4), Christian Ringhofer (a2) and Dragica Vasileska (a1)...

Abstract

In this work, we report on development of one-dimensional reaction-diffusion simulator needed to understand the kinetics of Cu-related metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cells has been studied in time-space domain self-consistently with free carrier transport. Resulting device performance was simulated as a function of stress time, thus showing pronounced effect that the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results presented confirm the validity and the potential of the approach presented in better understanding of the performance and metastabilities of CdTe photovoltaic devices.

Copyright

References

Hide All
1. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, vol. 23, pp. 19, 2015.
2. Corwine, C., Pudov, A., Gloeckler, M., Demtsu, S., and Sites, J., “Copper inclusion and migration from the back contact in CdTe solar cells,” Solar Energy Materials and Solar Cells, vol. 82, pp. 481489, 2004.
3. Perrenoud, J., Kranz, L., Gretener, C., Pianezzi, F., Nishiwaki, S., Buecheler, S., et al. ., “A comprehensive picture of Cu doping in CdTe solar cells,” Journal of Applied Physics, vol. 114, 2013.
4. Hiltner, J. F. and Sites, J. R., “Stability of CdTe solar cells at elevated temperatures: bias, temperature, and Cu dependence,” in National center for photovoltaics (NCPV) 15th program review meeting, 1999, pp. 170175.
5. Teeter, G. and Asher, S., “Modeling Cu migration in CdTe solar cells under device-processing and long-term stability conditions,” in Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE, 2008, pp. 16.
6. Pudov, A., Gloeckler, M., Demtsu, S., Sites, J., Barth, K., Enzenroth, R., et al. ., “Effect of back-contact copper concentration on CdTe cell operation,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, 2002, pp. 760763.
7. Demtsu, S., Albin, D., Sites, J., Metzger, W., and Duda, A., “Cu-related recombination in CdS/CdTe solar cells,” Thin Solid Films, vol. 516, pp. 22512254, 2008.
8. Demtsu, S., “Impact of back-contact materials on performance and stability of CdS/CdTe solar cells,” Colorado State University, 2006.
9. Chou, H., Rohatgi, A., Thomas, E., Kamra, S., and Bhat, A., “Effects of Cu on CdTe/CdS heterojunction solar cells with Au/Cu contacts,” Journal of The Electrochemical Society, vol. 142, pp. 254259, 1995.
10. Chou, H. C., Rohatgi, A., Jokerst, N. M., Thomas, E. W., and Kamra, S., “Copper migration in CdTe heterojunction solar cells,” Journal of Electronic Materials, vol. 25, pp. 10931098, Jul 1996.
11. Ma, J., Wei, S.-H., Gessert, T. A., and Chin, K. K., “Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe,” Physical Review B, vol. 83, 2011.
12. Wei, S.-H. and Zhang, S., “Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe,” Physical Review B, vol. 66, 2002.
13. Hu, S., “Nonequilibrium point defects and diffusion in silicon,” Materials Science and Engineering: R: Reports, vol. 13, pp. 105192, 1994.
14. Fahey, P. M., Griffin, P. B., and Plummer, J. D., “Point defects and dopant diffusion in silicon,” Reviews of Modern Physics, vol. 61, pp. 289384, 1989.
15. Gloeckler, M., Fahrenbruch, A., and Sites, J., “Numerical modeling of CIGS and CdTe solar cells: setting the baseline,” in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 491494.
16. Guo, D., Akis, R., Brinkman, D., Sankin, I., Fang, T., Vasileska, D., et al. ., “One-dimensional reaction-diffusion simulation of Cu migration in polycrystalline CdTe solar cells,” in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014, pp. 20112015.
17. Akis, R., Brinkman, D., Sankin, I., Fang, T., Guo, D., Vasileska, D., et al. ., “Extracting Cu diffusion parameters in polycrystalline CdTe,” in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014, pp. 32763281.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed