Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-26T06:24:37.176Z Has data issue: false hasContentIssue false

Crystallization of Amorphous 55wt%Cr-45wt%Ni Films Induced by 60 ns (0.694 μm) Single Laser Pulse

Published online by Cambridge University Press:  28 February 2011

I. Ursu
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
M. I. Bîrjega
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
C. A. Constantin
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
M. Dinescu
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
I. N. Mihailescu
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
N. Popescu Pogrion
Affiliation:
Central Institute of Physics, Bucharest,P.O.B.MG-6,ROMANIA
I. Ketskemety
Affiliation:
Institute of Experimental Physics, JATE University, 6720 Szeged, HUNGARY
E. Szill
Affiliation:
Institute of Experimental Physics, JATE University, 6720 Szeged, HUNGARY
Get access

Abstract

Amorphous 55wt%Cr-45wt%Ni films (60 nm thick) supported on EM copper grids were irradiated in air at normal incidence with a ruby laser (λ∼, 0.694 μm) through a ≈ 1.5 mm diameter diaphragm using one single laser pulse of 60 ns (FWHM) with fluences ranging from 120 to 540 J.m−2. The structure of the irradiated films is studied by TEM and TED. As a rule due to the appearance of thermal gradients between the centre and the mesh edge of the EM grid, the crystallization took place under various conditions of reaction from liquid phase, liquid melted layers , activated diffusion in solid state, to under threshold conditions for the development of the crystalline nuclei in the amorphous matrix. Periodic resonant and unreso-nant structures also developed in the liquid melted layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

/1/ Bîrjega, M.I., Bîrjega, R.M., Constantin, C.A., Dinescu, M., Florescu, I.Th., Miháilescu, I.N., Popescu-Pogrion, N. and Sárbu, C., Thin Solid Films 145, 111 (1986).Google Scholar
/2/ Bîrjega, M.I., Constantin, C.A., Florescu, I.Th. and Sárbu, C., Thin Solid Films, 92, 315 (1982).Google Scholar
/3/ Sárbu, C., Ráu, S.A., Popescu-Pogrion, N. and Bîrjega, M.I., Thin Solid Films 28, 311 (1975).Google Scholar
/4/ Lassak, L. and Hieber, K., Thin Solid Films 17, 105 (1973).Google Scholar
/5/ Andrew, R., Baufay, L., Laude, L.D., Lovato, M. and Wautelet, M. J.Phys. (Paris), Colloque C4, 41,71 (1980).Google Scholar
/6/ Leamy, H.J., Gilmer, G.H. and Dirks, A.G., Curr.Top.Mater.Sci. 6, 311 (1980).Google Scholar
/7/ Bîrjega, M.l., Dinescu, M., Miháilescu, I.N., Nanu, L., Constantin, C.A., Florescu, I.Th., Popescu-Pogrion, M. and Sárbu, C. Phys.stat.sol. (a) 95, 423 (1986).Google Scholar
/8/ Bîrjega, M.I., Nanu, L., Miháilescu, I.N., Dinescu, M., Popescu-Pogrion, N. and Sárbu, C., Optica Acta 33, 1073 (1986).Google Scholar
/9/ Hansen, M. and Anderko, K., Constitution of Binary Alloys Mc Graw-Hill, N.Y-1958, p.541.Google Scholar
/10/ Driel, H.M. van, Sipe, J.E. and Young, J.F., Phys.Rev.Letters 49, 1955 (1982).Google Scholar
/11/ Ursu, I., Miháilescu, I.N.,Popa, Al., Prokhorov, A.M., Ageev, V.P., Gorbunov, A.A. and Konov, V.I., J.Appl.Phys. 58, 3909 (1985).Google Scholar
/12/ Figueira, J.F. and Thomas, S.J., IEEE, J.Quantum Electron QE-18, 1380 (1982); Springer Ser.Chem.Phys.33, 212 (1983).CrossRefGoogle Scholar
/13/ Thomas, S.J., Harrison, R.F. and Figueira, J.F., Appl.Phys. Lett. 40, 200 (1982).Google Scholar