Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T12:25:01.167Z Has data issue: false hasContentIssue false

Crystallization Dynamics Of Ferroelectric Pzt (52/48) Thin Film Prepared By Reactive Cosputtering On Pt On Si(100)

Published online by Cambridge University Press:  15 February 2011

Woong Kil Choo
Affiliation:
Korea Advanced Institute of Science and Technology, Department of Electronic Materials Engineerig, Taejon 305–701, Korea
Hyo Jin Kim
Affiliation:
Korea Advanced Institute of Science and Technology, Applied Science Research Institute, Taejon 305–701, Korea
Kwang Young Kim
Affiliation:
Gold Star Co., Inc., Central Research Laboratories, Lab 2, Seoul 137–140, Korea
Sung Tae Kim
Affiliation:
Gold Star Co., Inc., Central Research Laboratories, Lab 2, Seoul 137–140, Korea
Get access

Abstract

The crystallization process and microstructural evolution of PZT (52/48) thin films deposited on Pt thin film electrode on Si (100) by reactive multitarget cosputtering technique have been studied as a function of post-annealing temperature and holding time. As annealing temperature increases, the Amorphous PZT films as-deposited at low substrate temperature of 200 °C crystallize into pyrochlore at 450 °C and ferroelectric perovskite phase with pseudo-cubic structure at 550 °C in sequence. X-ray diffraction data show crystallization into perovskite phase to be complete in 30 Minutes at 550 °C. Furthermore, the change of PZT/Pt/Ti/SiO2/Si interfacial TEM Morphology during heat-treatment has been closely scrutinized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and Araujo, C. A., Sciene 246, 1400 (1989).Google Scholar
2. Dey, S. K. and Zuleeg, R., Ferroelectrics 108, 37 (1990).Google Scholar
3. Parker, L. H. and Tarsch, A. R., IEEE Circuit and Device Magazine 6, 17 (1990).Google Scholar
4. Jaffe, B., Cook, W. R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic, New York, 1971).Google Scholar
5. Kim, K. Y., Kim, S. T., and Choo, W. K., Jap. J. Appl. Phys. 32, 1700 (1993).Google Scholar
6. Choo, W. K., Kim, K. Y., Kim, H. J., and Kim, S. T. in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E., Grabow, M., and Legally, M. (Mater. Res. Soc. Proc. 280, Pittsburg, PA, 1993).Google Scholar
7. Givargizov, E. I., Oriented Crystallization on Amorphous Substrates (Plenum Press, New York, 1991).Google Scholar
8. Etzold, K. F., Roy, R. A., Saenger, K. L., Lee, J.-W., and Cuomo, J. J. in Ferroelectric Films, edited by Bhalla, A. S. and Nair, K. M. (Ceramic Transactions 25, Amer. Ceram. Soc., Westerville, 1992), pp. 399411.Google Scholar
9. Olowolafe, J. O., Jones, R. E., Campbell, A. C., Maniar, P. D., Hedge, R. I., and Mogab, C. J. in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Proc. 243, Pittsburg, PA, 1992), pp. 355360.Google Scholar
10. Roy, R. A., Etzold, K. F., and Cuomo, J. J. M Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburg, PA, 1990), pp. 7782.Google Scholar
11. Kim, K. Y., PhD thesis, KAIST, 1993.Google Scholar
12. Chapin, L. N. and Myers, S. A. in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Proc. 200, Pittsburg, PA, 1990), pp. 153158.Google Scholar