Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:52:53.486Z Has data issue: false hasContentIssue false

Crystal Structure and Morphology of Hydrogen Absorbing Alloys with BCC Structure

Published online by Cambridge University Press:  11 February 2011

Akiba E.
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Enoki H.
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Nakamura Y.
Affiliation:
National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Get access

Abstract

Hydrogen absorbing alloys with BCC (body centered cubic) structure such as Ti-V-Mn, Ti-V-Cr and Ti-V-Cr-Mn systems were proposed and named as “Laves phase related BCC solid solution” by Akiba in 1993. Since our reports, many researchers have developed BCC hydrogen absorbing alloys. These alloys have higher hydrogen capacity (about 2.8 mass% at present) than conventional intermetallic compounds. Many efforts have been made to increase hydrogen capacity of the alloys but fundamental studies were a few. Crystal structure and morphology of the BCC alloys that are keys to understand BCC hydrogen absorbing alloys are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Libowitz, G. G. and Maeland, A. J., Material Science Forum, 30, 177 (1988).Google Scholar
2. Ono, S., Nomura, K., and Ikeda, Y., J. Less-Common Met., 72, 159 (1980).Google Scholar
3. Lynch, J. F., Maeland, A. J., and Libowitz, G. G., Z. Phys Chem. N. F., 145, S. 51 (1985).Google Scholar
4. Tsukahara, M., Takahashi, K., Mishima, T., Sakai, T., Miyamura, H., Kuriyama, N., and Uehanara, I., J. Alloys Comp., 224, 162 (1995).Google Scholar
5. Kabutomori, T., Takeda, H., Wakisaka, Y., and Ohnishi, K., J. Alloys Comp. 231, 528 (1995).Google Scholar
6. Tsukahara, M., Takahashi, K., Mishima, T., Isomura, A., and Sakai, T., J. Alloys Comp., 236, 151 (1995).Google Scholar
7. Reilly, J. J. and Wiswall, R. H. Jr, Inorg. Chem. 9, 1678 (1970).Google Scholar
8. Huot, J., Akiba, E., Ogura, T., and Ishido, Y., J. Alloys Comp., 218, 101 (1995).Google Scholar
9. Huot, J., Akiba, E., and Iba, H., J. Alloys Comp. 228, 181 (1995).Google Scholar
10. Iba, H. and Akiba, E., J. Alloys Comp., 231, 508 (1995).Google Scholar
11. van Mal, H. H., Buschow, K. H. J., and Miedema, A. R., J. Less-Common Met. 35, 65 (1974).Google Scholar
12. Akiba, E., Huot, J., and Iba, H., in The Electrochemical Society Proceedings, Vol. 94–27, (1994) pp. 165.Google Scholar
13. Iba, H. and Akiba, E., U.S. patent No. 5,968,291 and No. 6,153,032.Google Scholar
14. Iba, H. and Akiba, E., J. Alloys Comp., 253–254, 21 (1997).Google Scholar
15. Akiba, E. and Iba, H., Intermetallics, 6, 461 (1998).Google Scholar
16. Enoki, H., Bououdina, M., Akiba, E., Izumi, F., and Kamiyama, T., KENS Report-XII, 1997–98, (1999), pp. 72.Google Scholar
17. Nakamura, Y. and Akiba, E., J. Alloys Comp., 311/2, 317 (2000).Google Scholar
18. Schober, T. and Wenzl, H., In Hydrogen in Metals II, ed. by Alefeld, G., Völkl, J., Topics Appl. Phys., Vol. 29 (Springer, Berlin, Heidelberg 1978) Ch. 1.Google Scholar
19. Nakamura, Y., Akiba, E., Omura, T., and Kamiyama, T., KENS Report-XIII, 1999–2000, (2001), pp. 103.Google Scholar
20. Fukai, Y., In The Metal-Hydrogen Systems, Ch.1, Springer Series in Material Science, Vol. 21 (Springer-Verlag. Berlin Heidelberg 1993).Google Scholar
21. Nakamura, Y. and Akiba, E., J. Alloys Comp., 345, 175 (2002)Google Scholar
22. Nakamura, Y., Oikawa, K., Kamiyama, T., and Akiba, E., J. Alloys Comp., 316, 284 (2001).Google Scholar