Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-13T00:52:47.788Z Has data issue: false hasContentIssue false

Crystal polarity control of ZnO films and nonlinear optical response

Published online by Cambridge University Press:  31 January 2011

Jin Sub Park
Affiliation:
jinsubpark@berkeley.edujinsubpark37@gmail.com, Center for Interdisciplinary Research, Tohoku university, Sendai, Japan
Yoshiki Yamazaki
Affiliation:
yayo@laser.apph.tohoku.ac.jp, Tohoku university, Applied physics, Sendai, Japan
Yoshihiro Takahshi
Affiliation:
takahashi@laser.apph.tohoku.ac.jp, Tohoku university, Applied physics, Sendai, Japan
Tsutomu Minegishi
Affiliation:
tmine@imr.tohoku.ac.jp, Center for Interdisciplinary Research, Tohoku university, Sendai, Japan
Seunghwan Park
Affiliation:
shpark@imr.tohoku.ac.jp, Center for Interdisciplinary Research, Tohoku university, Sendai, Japan
Soonku Hong
Affiliation:
soonku@cnu.ac.kr, Chungnam national university, Deajeon, Korea, Republic of
Ji-Ho Chang
Affiliation:
jiho_chang@hhu.ac.kr, Korea Maritime University, Department of Nano Semiconductor, Busan, Korea, Republic of
Takumi Fujiwara
Affiliation:
fujiwara@laser.apph.tohoku.ac.jp, Tohoku university, Applied physics, Sendai, Japan
Takafumi Yao
Affiliation:
tyao@cir.tohoku.ac.jp, Center for Interdisciplinary Research, Tohoku university, Sendai, Japan
Get access

Abstract

We report that the nonlinear optical response of polarity controlled ZnO films grown by selective growth technique of Zn-polar and O-polar ZnO layers on sapphire substrate using Cr-compound buffer layers. ZnO layers grown on CrN/sapphire show Zn polar, while those grown on Cr2O3/sapphire result in O-polar ZnO films. In order to verify the origin of nonlinear optical response of ZnO, the polarity-controlled ZnO thin films grown on different buffer layers were investigated as nonlinear optical materials for second harmonic generation (SHG). The effective nonlinear optical coefficient (deff) of ZnO grown on Cr-compound buffer layers showed a higher value than that of ZnO grown on MgO buffer layers. Finally, by combining suggested in-situ polarity control technique with photolithography technique, we have fabricated 1D and 2D periodically-polarity-inverted (PPI) hetro-structures with periodicity ranging from 60 μm to 2 μm. The lateral polarity inversion is confirmed by piezo response microscopy. Such PPI ZnO heterostructures show the enhancement of SHG intensity comparing with the ZnO films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cao, H., Wu, J. Y., Ong, H. C., Dai, J. Y., and Chang, R. P. H., Appl. Phys. Lett. 73, 572 (1998).10.1063/1.121859Google Scholar
2 Wang, G., Kiehne, G. T., Wong, G. K. L., and Ketterson, J. B., Liu, X., and Chang, R. P. H., Appl. Phys. Lett. 80, 401 (2002).10.1063/1.1435065Google Scholar
3 Fejer, M. M., Phys. Today 47 (5), 25 (1994).10.1063/1.881430Google Scholar
4 Zhu, S. N., Zhu, H. Y., and Ming, N. B.. Science 278, 843 (1997).10.1126/science.278.5339.843Google Scholar
5 Fradkin, K., Arie, A., Skliar, A., and Rosenman, G., Appl. Phys. Lett. 74, 914 (1999).10.1063/1.123408Google Scholar
6 Wang, G., Wong, G. K. L., Ketterson, J. B., Appl. Opt. 40, 5436 (2001).10.1364/AO.40.005436Google Scholar
7 Larciprete, M. C., Passeri, D., Michelotti, F., Paolini, S., Sibilia, C., Bertolotti, M., Eraldini, A., Sarto, F., Somma, F., Mastro, S. Lo, J. Appl. Phys. 97, 023501 (2005).10.1063/1.1835541Google Scholar
8 Johnson, J. C., Yan, H., Schaller, R. D., Peterson, P. B., Yang, P., R., , J. Saykally, Nano Lett. 2, 279 (2002).10.1021/nl015686nGoogle Scholar
9 Johnson, J. C., Knutsen, K. P., Yan, H., Law, M., Zhang, Y., Yang, P., R., , J. Saykally, Nano Lett. 4, 197 (2004).10.1021/nl034780wGoogle Scholar
10 Neumann, U., Gruwald, G., Griebner, U., Steoinmeyer, G., W. Seeber. Appl. Phys. Lett. 84, 170 (2004).10.1063/1.1639939Google Scholar
11 Neumann, U., Grunwald, R., Griebner, U., Steinmeyer, G., Schmidbauer, M., Seeber, W., Appl. Phys. Lett. 87, 171108 (2005).10.1063/1.2112199Google Scholar
12 Park, J. S., Hong, S. K., Minegishi, T., Park, S. H., Im, I. H., Hanada, T., Cho, M. W., and Yao, T., Lee, J. W., and Lee, J. Y., Appl. Phys. Lett. 90, 201907 (2007).10.1063/1.2740190Google Scholar
13 Park, J.S., Chang, J.H., Minegishi, T., Lee, H.J., Park, S.H., Im, I.H., Hanada, T., Hong, S.K., Cho, M.W., and Yao, T., J. Electron Mater. 37, 736 (2008).10.1007/s11664-007-0350-yGoogle Scholar
14 Minegishi, T., Lshizawa, A., Kim, J., Ahn, S., Park, S., Park, J., and Im, I., Oh, D.C., nakano, H., Fujii, K., Jeon, H., and Yao, T., J. Vac. Sci. Technol. B 26(3) 1120 (2008).10.1116/1.2905244Google Scholar
15 Park, J. S., Minegishi, T., Lee, S. H., Im, I. H., Park, S. H., Hanada, T., Goto, T., Cho, M. W., Yao, T., Hong, S.K., and Chang, J.H., J. Vac. Sci. Technol. A 26(1), 90 (2008).10.1116/1.2821741Google Scholar
16 Chowdhury, A., Ng, H. M., Bhardwaj, M., and Weimann, N. G., Appl Phys. Lett. 83, 1077 (2003).10.1063/1.1599044Google Scholar
17 Katayam, R., Kuge, Y., Kondo, T., Onabe, K., J. Cryst. Growth 301-302, 447 (2007).10.1016/j.jcrysgro.2006.11.182Google Scholar
18 Kato, H., Miyamoto, K., Sano, M., and Yao, T., Appl. Phys. Lett. 84, 4562 (2004).10.1063/1.1759377Google Scholar
19 Maker, P. D., Terhune, R. W., Nisenholf, M., and Savage, C. M., Phys. Rev. Lett. 8, 21 (1962).10.1103/PhysRevLett.8.21Google Scholar
20 Yu, Y. M. and Liu, B. G., Phys. Rev. B 77, 195327 (2008).10.1103/PhysRevB.77.195327Google Scholar
21 Daap, J. I., Doris, B., Deng, Q., Downer, M. C., Lowell, J. K., Deibold, A. C., Appl. Phys. Lett. 64, 2139 (1994).10.1063/1.111711Google Scholar
22 Cho, M. W., Setiawan, A., Ko, H. J., Hong, S. K., and Yao, T., Semicond. Sci. Technol. 20, S13 (2005).10.1088/0268-1242/20/4/002Google Scholar
23 Elsner, J., Jones, R., Sitch, P. K., Porezag, V. D., Elstner, M., Frauenheim, Th., Heggie, M.I., Oberg, S., and Briddon, P. R.. Phys. Rev. Lett. 79, 3672 (1997).10.1103/PhysRevLett.79.3672Google Scholar
24 Yoo, S. J. B., Bhat, R., Canequ, C., and Koza, M. A., Appl. Phys. Lett. 66, 3410 (1995).10.1063/1.113370Google Scholar
25 Xiang, H. J., Yang, J., Hou, J. G., and Zhu, Q., Appl. Phys. Lett. 89, 223111 (2006).10.1063/1.2397013Google Scholar
26 Rodriguez, B. J., Gruverman, A., Kingon, A. I., and Nemanich, R. J., and Ambacher, O., Appl. Phys. Lett. 80, 4166 (2002).10.1063/1.1483117Google Scholar