Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T21:44:14.021Z Has data issue: false hasContentIssue false

Crystal Nucleation in Amorphous Si Films on Glass Substrate by Si+ Ion Implantation

Published online by Cambridge University Press:  15 February 2011

Tomonori Yamaoka
Affiliation:
Tsukuba Research Laboratory, Nippon Sheet Glass Co., Ltd., 5-4 Tokodai, Tsukuba City, Ibaraki, Japan
Keiji Oyoshi
Affiliation:
Tsukuba Research Laboratory, Nippon Sheet Glass Co., Ltd., 5-4 Tokodai, Tsukuba City, Ibaraki, Japan
Takashi Tagami
Affiliation:
Tsukuba Research Laboratory, Nippon Sheet Glass Co., Ltd., 5-4 Tokodai, Tsukuba City, Ibaraki, Japan
Yasunori Arima
Affiliation:
Tsukuba Research Laboratory, Nippon Sheet Glass Co., Ltd., 5-4 Tokodai, Tsukuba City, Ibaraki, Japan
Shuhei Tanaka
Affiliation:
Tsukuba Research Laboratory, Nippon Sheet Glass Co., Ltd., 5-4 Tokodai, Tsukuba City, Ibaraki, Japan
Get access

Abstract

Crystallization of amorphous Si films on a glass substrate using Si+ ion implantation is investigated. 100keV and 180keV Si+ ion implantations into 600nm-thick amorphous Si layers crystallize half and almost all of the film thicknesses, respectively. This result demonstrates that crystallization by ion implantation, which contains both crystal nucleation and grain growth, is due to ion-solid interaction, and not to “pure” thermal effect by ion beam heating. Furthermore, two distinct regions are observed in transmission electron microscopy investigation of grain size at different depths of crystallized Si/SiO2 multi-layer specimens. The deep region below the projected range is composed of grains smaller than in the shallow region. This result is strongly related with crystal nucleation and growth kinetics by ion implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakata, J. and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).Google Scholar
2. Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
3. Leibrich, A., Maher, D. M., Konell, R. V., and Brown, W. L., Nucl. Instrum. Methods Phys. Res. B19/20, 457 (1987).Google Scholar
4. Poate, J. M., Linnros, J., Priolo, F., Jacobson, D. C., and Batstone, J. L., Phys. Rev. Lett. 60, 1332 (1988).Google Scholar
5. Kobayashi, N.,Kobayashi, H.,and Kumashiro, Y., Proc. 12th Symp. Ion Sources Ion-Assisted Technol., Tokyo, 523 (1989)Google Scholar
6. Yamaoka, T., Oyoshi, K., Tagami, T., Arima, Y., Yamashita, K., and Tanaka, S., Appl. Phys. Lett. 57, 1970 (1990).Google Scholar
7. Im, J. S. and Atwater, H.A.,Appl. Phys. Lett. 57, 1766(1990).Google Scholar
8. Spinella, C.,Lombardo, S., and Campisano, S. U., Appl. Phys. Lett. 55, 109 (1989).Google Scholar
9. Iverson, R. B. and Reif, R., J. Appl. Phys. 62, 1675 (1975).Google Scholar
10. Csepregi, L., Kennedy, E. F., Lau, S. S., and Mayer, J. W., Appl. Phys. Lett. 29, 645 (1976).Google Scholar