Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:55:15.994Z Has data issue: false hasContentIssue false

Critical Microscopic Processes in Semiconductor Lasers

Published online by Cambridge University Press:  15 February 2011

Mark S. Hybertsen
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
M. A. Alam
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
G. A. Baraff
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
R. K. Smith
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

The cascade of microscopic processes relevant to semiconductor laser operation is outlined. An integrated laser simulator which encapsulates these processes is applied to illustrate the connection between an accurate model of the optical gain in the quantum wells and measured characteristics of representative 1.3 μm InGaAsP/InP lasers. These results highlight the impact of carrier transport effects on the observed optical gain and the modulation response of semiconductor lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Quantum Well Lasers, Ed. Zory, P.S. Jr, Academic Press, New York, 1993.Google Scholar
2. Li, Z-M., Dzurko, KI.M., Delage, A. and McAlister, S.P., “A Self-Consistent Two Dimensional Model of Quantum Well Semiconductor Lasers: Optimization of a GRIN-SCH SQW Laser Structure,” IEEE J. Quantum Electron., vol. 28, pp. 792803, 1992.Google Scholar
3. Tessler, N. and Eisenstein, G., “On Carrier Injection and Gain Dynamics in Quantum Well Lasers,” IEEE J. Quantum Electron., vol. 29, pp. 15861595, 1993.Google Scholar
4. Grupen, M. and Hess, K., “Simulation of Carrier Transport and Nonlinearities in Quantum Well Laser Diodes,” IEEE J Quantum Electron., vol. 34, pp. 120140, 1998.Google Scholar
5. Alam, M.A., Hybertsen, M.S., Smith, R.K., Baraff, G.A., and Pinto, M.R., “Simulation of Semiconductor Quantum Well Lasers,” SPIE Proceedings, vol. 2994, Physics and Simulation of Optoelectronic Devices V, pp. 709722, 1997.Google Scholar
6. Alam, M.A., Hybertsen, M.S., Baraff, G.A., and Smith, R.K., “Simulation of Semiconductor Quantum Well Lasers,” IEEE Trans. Elec. Devices, submitted.Google Scholar
7. Hybertsen, M.S., Alam, M.A., Shtengel, G.E., Belenky, G.L., Reynolds, C.L., Smith, R.K., Baraff, G.A., Kazarinov, R.F., Wynn, J.D., Smith, L.E., “Role of p-Doping Profile in InGaAsP Multi-Quantum Well Lasers: Comparison of Simulation and Experiment”, SPIE Proceedings, vol. 3625, Physics and Simulation of Optoelectronic Devices VII, pp. 524534, 1999.Google Scholar
8. Selberherr, Siegfried, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, 1984.Google Scholar
9. Blom, P.W.M., Cales, J., Haverkort, J.E.M., and Wolter, J.H., “Experimental and theoretical study of the carrier capture time,” Optical and Quantum Electronics, vol. 26, pp. S667–S677, 1994.Google Scholar
10. Register, L.F. and Hess, K., “Simulation of carrier capture in semiconductor quantum wells: Bridging the gap from quantum to classical transport,” Appl. Phys. Lett., vol. 71, pp. 12221224, 1997.Google Scholar
11. Baraff, G.A., “Model for the effect of finite phase-coherence length on resonant transmission and capture by quantum wells,” Phys. Rev. B, vol. 58, pp. 1379913810, 1998; “Semiclassical description of electron transport in semiconductor quantum-well devices,” Phys. Rev. B, vol. 55, pp. 10745–10753, 1997.Google Scholar
12. Hybertsen, M.S., Kazarinov, R.F., Baraff, G.A., Ackerman, D.A., Shtengel, G.E., Morton, P.A., Tanbun-Ek, T., and Logan, R.A., “Modeling of Gain for InGaAsP Based Lasers,” SPIE Proceedings, vol. 2399, Physics and Simulation of Optoelectronic Devices III, pp. 132154, 1995.Google Scholar
13. Chow, W.W., Knorr, A., Hughes, S., Girndt, A., and Koch, S.W., “Carrier Correlation Effects in a Quantum-Well Semiconductor Laser Medium,” IEEE J of Selected Topics in Quantum Electron., vol. 3, pp. 136141, 1997.Google Scholar
14. Shah, J., “Auger recombination coefficients in In0.53Ga0.47 As,” in Properties of Lattice-Matched and Strained Indium Gallium Arsenide, Bhattacharya, P.K., Ed., INSPEC, London, 1993, pp. 180184.Google Scholar
15. Fuchs, G., Schiedel, C., Hangleiter, A., Harle, V., and Scholz, F., “Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum-well lasers,” Appl. Phys. Lett., vol. 62, pp. 396398, 1993.Google Scholar
16. Bude, J., Hess, K., and lafrate, G.J., “Impact ionization in semiconductors: Effects of high electric fields and high scattering rates,” Phys. Rev. B, vol. 45, pp. 1095810964, 1992.Google Scholar
17. Takeshima, M., “Effect of anisotropic band parameters on band-to-band Auger recombination in In0.72Ga0.28 As 0.6P0.4 ,” Phys. Rev. B, vol. 29, pp. 19932001, 1984.Google Scholar
18. Alam, M.A. and Lundstrom, M.S., “Effects of Carrier Heating on Laser Dynamics – A Monte Carlo Study,” IEEE J Quantum Electron., vol. 33, pp. 22092220, 1997.Google Scholar
19. Shtengel, G.E., Kazarinov, R.F., Belenky, G.L., and Reynolds, C.L. Jr., “Wavelength Chirp and Dependence of Carrier Temperature on Current in MQW InGaAsP-InP Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 13961402, 1997.Google Scholar
20. Henry, C.H., Logan, R.A., Merritt, F.R. and Luongo, J.P., “The Effect of Invervalence Band Absorption on the Thermal Behavior of InGaAsP Lasers,” IEEE J. Quantum Electron., vol. 19, pp. 947952, (1983).Google Scholar
21. Nagarajan, R., Ishikawa, M., Fukushima, T., Geels, R.S., and Bowers, J.E., “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. of Quantum Electron., vol. 28, pp. 19902008, 1992.Google Scholar