Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T14:30:39.647Z Has data issue: false hasContentIssue false

Critical Cooling Rate and Thermal Stability in Zr-Ti-Cu-Ni-Be Bulk Metallic Glasses

Published online by Cambridge University Press:  17 March 2011

Theodore A. Waniuk
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Jan Schroers
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
William L. Johnson
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The crystallization behavior of a series of alloys in the Zr-Ti-Cu-Ni-Be system is studied. Upon cooling from the molten state with different rates, alloys with compositions ranging along a tie line from (Zr75Ti25)55(Ni45Cu55)22.5Be22.5 (Vit1) to (Zr85Ti15)55(Ni57Cu43)17.5Be27.5 (Vit4) show a continuous increase in the critical cooling rate to suppress crystallization. In contrast, thermal analysis of the same alloys shows that the undercooled liquid region, the temperature difference between the glass transition temperature and the crystallization temperature, is largest for compositions midway between the two endpoints, revealing that glass forming ability does not correlate with thermal stability. The relationship between the change in glass forming ability and thermal stability is discussed with reference to a chemical decomposition process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
2. Inoue, A., Nishiyama, N., and Kimura, H., Mater. Trans., JIM 38, 179 (1997).Google Scholar
3. Turnbull, D., Contemp. Phy. 10, 473 (1969).Google Scholar
4. Lu, Z. P., Tan, H., Li, Y., and Ng, S. C., Scripta Mater. 42, 667 (2000).Google Scholar
5. Inoue, A., Zhang, T., and Masumoto, T., J. Non-Cryst. Solids 156–158, 473 (1993).Google Scholar
6. Shen, T. D. and Schwarz, R. B., Appl. Phys. Lett. 75, 49 (1999).Google Scholar
7. Busch, R., Schneider, S., Peker, A., and Johnson, W. L., Appl. Phys. Lett. 67, 1544 (1995).Google Scholar
8. Schneider, S., Thiyagarajan, P., and Johnson, W. L., Appl. Phys. Lett. 68, 493 (1996).Google Scholar
9. Wang, W-H., Wei, Q., Friedrich, S., Macht, M. P., Wanderka, N., and Wollenberger, H., Appl. Phys. Lett. 71, 1053 (1997).Google Scholar
10. Schroers, J., Johnson, W. L., Appl. Phys. Lett. 76, 2343 (2000).Google Scholar
11. Schroers, J., Masuhr, A., Johnson, W. L., and Busch, R., Phy. Rev. B. 60, 11855 (1999).Google Scholar
12. Löffler, J. F., Thiyagarajan, P., and Johnson, W. L., J. Appl. Cryst. 33, 500 (2000).Google Scholar
13. Hays, C. C., Kim, C. P., and Johnson, W. L., Appl. Phys. Lett. 75, 1089 (1999).Google Scholar
14. Schroers, J. and Johnson, W. L., Mater. Trans. JIM 41, 1530 (2000).Google Scholar
15 Masuhr, A., Ph.D. thesis, California Institute of Technology (1998).Google Scholar
16. Busch, R., Kim, Y. J., and Johnson, W. L., J. Appl. Phys. 77, 4039 (1995).Google Scholar
17. Waniuk, T. A., Schroers, Jan, and Johnson, W. L., Appl. Phys. Lett., in press (2001).Google Scholar