Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T18:51:35.877Z Has data issue: false hasContentIssue false

Creep deformation in a 3mol% Y2O3-Stabilized Tetragonal Zirconia

Published online by Cambridge University Press:  10 February 2011

K. Morita
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba-shi, lbaraki 305-0047, Japan
K. Hiraga
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba-shi, lbaraki 305-0047, Japan
Y. Sakka
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba-shi, lbaraki 305-0047, Japan
Get access

Abstract

The high temperature deformation behavior of a 3mol% yttria-stabilized tetragonal zirconia (3Y-TZP) is examined. The analysis of creep strain rate, which was monitored directly with an optical extensometer and corrected for the current grain size, reveals a sigmoidal feature in the true stress-creep rate relationship. At lower stresses, a stress exponent n of ∼1.6 incorporated with a grain size exponent of 2.0 suggests the intervention of a lattice diffusion creep mechanism. For higher stresses where n ∼2.7, evidence of intragranular dislocation activities suggests that dislocations may play an important role in the accommodation process for grain boundary sliding in 3Y-TZP.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chokshi, A.H., Mat. Sci. Eng.A 166, 119(1993).10.1016/0921-5093(93)90316-7Google Scholar
[2] Chokshi, A.H., Mat. Sci. Eng. A234–236, 986(1997).10.1016/S0921-5093(97)00355-9Google Scholar
[3] Owen, D.M. and Chokshi, A.H., Acta Mater. Mater. 46, 667(1998).10.1016/S1359-6454(97)00251-6Google Scholar
[4] Hines, J.A., Ikuhara, Y., Chokshi, A.H. and Sakuma, T., Acta Mater. Mater. 46, 5557(1998).10.1016/S1359-6454(98)00171-2Google Scholar
[5] Jimenez-Melendo, M., Dominguez-Rodoriguez, A. and Bravo-Leon, A., J. Am. Ceram. Soc. 81, 2761(1998).10.1111/j.1151-2916.1998.tb02695.xGoogle Scholar
[6] Bravo-Leon, A., Jimenez-Melendo, M. and Dominguez-Rodoriguez, A., Scripta Metall. 24, 1459(1990).Google Scholar
[7] Jimenez-Melendo, M., Bravo-Leon, A. and Dominguez-Rodoriguez, A., Mat. Sci. Forum 243–245, 363(1997).Google Scholar
[8] Dominguez-Rodoriguez, A., Bravo-Leon, A., Ye, J.D. and Jimenez-Melendo, M., Mat. Sci. Eng. A247, 97(1998).10.1016/S0921-5093(97)00837-XGoogle Scholar
[9] Morita, K. and Hiraga, K., submitted to Scripta Metall.Google Scholar
[10] Morita, K., Hiraga, K. and Sakka, Y., Proceedings of “The 8th International Conference on Creep and Fracture of Eng. Materials and Stracture”, 847(2000).Google Scholar
[11] Zhao, J., Ikuhara, Y. and Sakuma, T., J. Am. Ceram. Soc. 81, 2087(1998).10.1111/j.1151-2916.1998.tb02591.xGoogle Scholar
[12] Sato, E. and Kuribayashi, K., ISIJ Int. 33, 825(1993).10.2355/isijinternational.33.825Google Scholar
[13] Seidensticker, J.R. and Mayo, M.J., Scripta Metall. 38, 1091(1998).10.1016/S1359-6462(98)00004-9Google Scholar
[14] Arzt, E., Ashby, M.F. and Verrall, R.A., Acta Mater. Mater. 31, 1977(1983).10.1016/0001-6160(83)90015-9Google Scholar
[15] Ashby, M.F. and Verrall, R.A., Acta Mater. Mater. 21, 149(1973).10.1016/0001-6160(73)90057-6Google Scholar
[16] Ball, A. and Hutchison, M.H., Met. Sci. J., 3, 1(1969).10.1179/msc.1969.3.1.1Google Scholar
[17] Mukherjee, A.K., Mat. Sci. Eng. 8, 83(1971).10.1016/0025-5416(71)90085-1Google Scholar
[18] Dimos, D. and Kohlstedt, D.L., J. Am. Ceram. Soc. 70, 531(1987).10.1111/j.1151-2916.1987.tb05700.xGoogle Scholar